Quality of Water of the Gila River Basin Above Coolidge Dam Arizona By JOHN D. HEM GEOLOGICAL SURVEY WATER-SUPPLY PAPER 1104 Prepared in cooperation with Defense Plant Corporation This copy is PUBLIC PROPERTY and is not to be removed from the official files. PRIVATE POSSESSION IS UNLAWFUL (R. S. Sup. Vol. 2, pp. 380, Sej. 749) # UNITED STATES DEPARTMENT OF THE INTERIOR Oscar L. Chapman, Secretary **GEOLOGICAL SURVEY** W. E. Wrather, Director # CONTENTS | Abstract | |--| | Introduction | | History, scope, and purpose of the investigation | | Acknowledgments | | Location and description of the area | | Physiography | | Population | | Transportation | | History and development | | Climate and vegetation | | Rainfall and runoff | | Land use | | Geologic structure | | Previous investigations | | Methods of quality-of-water investigation | | Number and frequency of samples | | Surface water | | Ground water | | Methods of analysis | | Expression of results | | Sources of dissolved matter in surface and ground waters | | Common constituents of the dissolved matter | | Soluble matter in hard rocks | | Soluble matter in valley-fill deposits | | Unusual constituents of the dissolved matter | | Fluoride | | Gila River | | Ground waters | | Borate | | Chemical character of surface and ground waters of the basin, discussed by | | areas | | Grant County, N. Mex. | | Surface water | | Ground water | | Gila River Basin from the mouth of Blue Creek to the bridge on United | | States Highway 666 | | Surface water | | Seepage studies | | Variations in flow below Duncan | | Ground water | | Gila River Basin from the bridge on United States Highway 666 to | | mouth of Bonita Creek | | Surface water | | Ground water | | | age | |--|-----| | San Francisco River Basin | 30 | | Surface water | 30 | | Main stream | 30 | | Blue River | 31 | | Chase Creek | 31 | | Ground water | 33 | | Phelps Dodge Corporation well | 33 | | Clifton Hot Springs | 33 | | Relationship of Clifton Hot Springs to quality of water in | | | San Francisco River | 34 | | Apparent decrease in spring flow in 1944 | 35 | | | 35 | | Eagle Creek Basin | 36 | | | 36 | | | 36 | | | 36 | | | 37 | | | 37 | | | 37 | | | 37 | | | 37 | | | 37 | | | 37 | | | 38 | | | 38 | | | 38 | | 000000000000000000000000000000000000000 | 39 | | | 41 | | | 41 | | 7 Marie 1 Mari | 41 | | and the control of the Ball of the second | 43 | | Sockage statement and a second | 48 | | | 49 | | | 49 | | ************************************** | 49 | | The state of s | 50 | | The Total Date of Carrier and | | | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 50 | | 11110 00 11101111111111 // 001111111111 | 50 | | The state of s | 51 | | The first the first term of th | 52 | | The state of s | 52 | | on opinion wholly booking in a contract of the | 53 | | the state of s | 53 | | | 53 | | optime optime of the second of the second of the second optime optime optime optime optime optime optime optime op | 55 | | one-real distance of all topical waterings | 55 | | Water from miller water bearing formations. | 56 | | | 56 | | | 56 | | Carron 100001 VOII | 56 | | 7 TO THE TOTAL OF | 57 | | Ground water | 57 | CONTENTS | Chemical character of surface and ground waters of the basin—Con. | |---| | Public water supplies. | | Relationship of chemical character to use of water | | Industrial use | | Domestic use | | Public Health Service standards | | Fluoride in domestic water supplies | | Availability of satisfactory domestic water supplies | | Livestock use | | Irrigation use | | Boron in irrigation water | | Classification of irrigation waters | | Surface waters used for irrigation | | Ground waters used for irrigation | | Artesian water | | Shallow ground water | | Removal of salts from the basin by drainage into Gila River | | Analyses of surface waters and ground waters | | Index | | ILLUSTRATIONS | | PLATE 1. Map of Gila River Basin above Coolidge Dam In po | | 2. Map of Safford Valley, Ariz In poor | | FIGURE 1. Daily chloride concentration and daily mean discharge of Gila | | River at Safford, Ariz | | 2. Specific conductance and elevation of water table for three | | typical observation wells, Safford Valley, Ariz | | 3. Analyses of water from Gila River between the mouth of Blue | | Creek near Virden, N. Mex., and the highway bridge south | | of Clifton, Ariz | | 4. Analyses of ground waters from the Gila River Basin above the mouth of Bonita Creek | | 5. Weighted average analyses of water at four gaging stations in | | the Gila River Basin for the year ended September 30, 1944 | | 6. Analyses of ground waters from the Gila River Basin below the | | mouth of Bonita Creek | | 7. Analyses of water from Gila River between the mouth of | | Bonita Creek near Solomonsville, Ariz., and Bylas, Ariz | | | | | | MADIDA | | TABLES | | | | Chamical analyzes of surface waters and ground waters | | Chemical analyses of surface waters and ground waters: Gila River between the mouth of Blue Creek near Virden, N. Mex., | | | | | | ArizGround waters in the Gila River Basin, Grant County, N. Mex | | Ground waters in the Gila River Basin, Grant County, N. Mex Ground waters in the Gila River Basin, Hidalgo County, N. Mex | # CONTENTS | Chemical analyses of surface waters and ground waters—Continued Ground waters in the Gila River Basin above bridge on United States Highway 666 south of Clifton, Greenlee County, Ariz | Page
76 | |---|------------| | Gila River between the bridge on United States Highway 666 south of Clifton, Ariz., and the mouth of Bonita Creek near Solomonsville, Ariz. | 78 | | San Francisco River and its tributaries and Eagle and Bonita Creeks | 79 | | Ground waters near Gila River between the bridge on United States | | | Highway 666 south of Clifton, Ariz., and the mouth of Bonita Creek | | | near Solomonsville, Ariz | 81 | | Ground waters in the drainage basins of San Francisco River and Eagle Creek, Greenlee County, Ariz | 83 | | Waters of San Simon Creek as shown by analyses of Gila River at Safford, Ariz | 84 | | Ground waters in the drainage basin of San Simon Creek, Cochise County, Ariz | 86 | | Ground waters in the drainage basin of San Simon Creek, Graham County, Ariz | 88 | | Gila River between the mouth of Bonita Creek near Solomonsville,
Ariz., and the Southern Pacific Railroad bridge at Calva, Ariz | 89 | | Changes in the chemical character of the water of Gila River between
the mouth of Bonita Creek near Solomonsville, Ariz., and the
Southern Pacific Railroad bridge at Calva, Ariz | 94 | | Tributaries of and diversions from Gila River between the mouth of | 94 | | Bonita Creek near Solomonsville, Ariz., and the Southern Pacific | | | Railroad bridge at Calva, Ariz | 107 | | Ground waters in the Gila River Basin, Graham County, Ariz., between the mouth of Bonita Creek near Solomonsville and the | 116 | | Southern Pacific Railroad bridge at Calva, Ariz | 224 | | San Carlos River near Peridot, ArizGround waters in the Gila River Basin between the Southern Pacific | 444 | | Railroad bridge at Calva, Ariz., and Coolidge Dam | 225 | | Public water supplies in the Gila River Basin above Coolidge Dam. | 226 | | 1 dono navo supplies in the data inver basin above coolidge balling | | # QUALITY OF WATER OF THE GILA RIVER BASIN ABOVE COOLIDGE DAM, ARIZONA # By John D. Hem ### ABSTRACT Gila River and its tributaries above Coolidge Dam drain an area of 12,890 square miles in southwestern New Mexico and southeastern Arizona. The basin is a part of the Basin and Range physiographic province and contains two important
irrigated valleys, the Duncan-Virden Valley in Arizona and New Mexico and the Safford Valley in Arizona. Between 1940 and 1944 many samples of surface and ground waters in the basin were collected and analyzed, and nearly 4,000 of these analyses are tabulated in this report. These analyses show that the chemical character and concentration of the water in Gila River change greatly from the headwaters of the river in New Mexico to Calva, Ariz., at the head of the San Carlos Reservoir behind Coolidge Dam. Above the mouth of Blue Creek near Virden, N. Mex., the river water is of low mineral content and contains mostly calcium and bicarbonate. Irrigation return flow and other ground-water inflows in the Duncan-Virden Valley cause significant changes in the chemical character of the river water at low flow, and at the gaging station at the bridge on United States Highway 666 south of Clifton, Ariz., the mineral content is appreciably higher than that of the river water at the mouth of Blue Creek. Ground water in most of the Duncan-Virden Valley is low in dissolved matter, but in the central part of the valley near Duncan there are ground waters with concentrations of as much as 5,000 parts per million of dissolved solids. The dilute waters contain mostly calcium and bicarbonate, and the waters of higher concentration contain increased amounts of sodium, sulfate, and chloride. In the canyon section between the bridge on United States Highway 666 and the mouth of Bonita Creek the river is joined by three important tributaries. Of these, the first and largest is San Francisco River, which contributes water containing considerable amounts of sodium and chloride. As a result of the inflow from San Francisco River the water of Gila River at the mouth of Bonita Creek contains much more sodium and chloride than it does at the bridge on United States Highway 666. There are some inflows to the river in the canyon section from ground water, but they are small and influence only slightly the chemical character of the river water. The water contributed to the river by Eagle Creek and Bonita Creek is low in mineral content and contains mostly calcium and bicarbonate. Shallow ground waters along San Francisco River at Clifton are highly mineralized, and the Clifton Hot Springs contribute a large amount of sodium and chloride to the water of San Francisco River in Clifton. Water from the springs contains about 9,000 parts per million of dissolved matter, consisting chiefly of sodium and chloride with considerable amounts of calcium. Their flow has been estimated at a maximum of 2.9 second-feet in August 1941 and June 1943 and a minimum of 0.9 second-foot in August 1944. Ground waters sampled eleswhere in the basins of San Francisco River, Eagle Creek, and Bonita Creek were low in concentration and contained chiefly calcium, magnesium, and bicarbonate. San Simon Creek flood waters are likely to contain 500 to 900 parts per million of dissolved matter, consisting chiefly of sodium, bicarbonate, chloride, and sulfate. Water obtained from deep artesian wells near the town of San Simon is low in mineral content, with dissolved solids in most instances between 200 and 300 parts per million. In the western part of the artesian area near San Simon the waters contain mainly sodium and bicarbonate. East and southeast of San Simon the waters contain more calcium. Near the lower end of the San Simon Basin ground waters from deep wells contain about 1,000 parts per million of dissolved solids, mainly sodium and chloride. In most of the San Simon Creek Basin the ground waters contain more than 1.0 part per million of fluoride, and near the town of San Simon some of the ground waters contain more than 20 parts per million of fluoride. Below the mouth of Bonita Creek Gila River enters the Safford Valley, in which large amounts of water are diverted for irrigation, and much water enters the river in this reach as ground-water and surface-water return flow. Weighted average analyses for the year ended September 30, 1944, show that the river water at the gaging station near Solomonsville at the head of the valley contained an average of 454 parts per million of dissolved matter, consisting mostly of sodium, calcium, bicarbonate, and chloride, and at Bylas, near the lower end of the valley, the river water contained an average of 957 parts per million of dissolved matter, consisting mainly of sodium and chloride. The total loads of salts carried by the river at these two stations during the year were 84,100 tons near Solomonsville and 105,000 tons at Bylas. The increases in the concentration and total load of dissolved solids of the river in the valley are caused by inflows of highly mineralized ground water, some of which represent return flow from irrigated lands and some of which represent ground-water inflows that have no connection with irrigation in the valley. The main zones of ground-water inflow to the river are in the vicinity of Pima and near Fort Thomas. Wells in the Safford Valley at depths of less than about 100 feet draw water from the Recent alluvium in the valley, and the deeper wells obtain water, usually under artesian pressure, in the underlying older valley fill.* Most of the samples obtained in the area were from shallow wells, and analyses of these samples indicate that the concentrations of water in the alluvium in the valley range from less than 200 parts per million along Black Rock Wash to more than 10,000 parts per million along the river southeast of Fort Thomas. In most places the concentration of the ground water is more than 1,000 parts per million of dissolved solids, consisting mostly of sodium and chloride. The more dilute waters contain chiefly calcium and bicarbonate. Waters from the older fill generally are more highly mineralized than those from the alluvium and contain a higher proportion of sodium and chloride. Many of the surface and ground waters of the basin are too highly mineralized to be satisfactory supplies for industrial uses. In parts of the basin, particularly in the lower Safford Valley, the ground waters are too highly mineralized to be used for domestic supplies, and in many places in the basin the ground waters contain too much fluoride to be good drinking waters. The surface waters of the basin are rather highly mineralized at times but are generally satisfactory for irrigation, and only in a few areas, mostly in the lower part of the basin, have ^{*}Older valley fill is of Tertiary and Pleistocene age. the surface waters caused any accumulation of soluble salts in the soils on which they have been used. In recent years, however, there has been a large and increasing amount of pumping from shallow ground water to supplement the supplies of surface water available for irrigation in the Duncan-Virden and Safford Valleys. Much of the ground water pumped in the Safford Valley is so highly mineralized that it would ordinarily be considered unfit for irrigation, and the continued use of large amounts of highly mineralized ground water in the valley may result in damage to crop land. # INTRODUCTION # HISTORY, SCOPE, AND PURPOSE OF THE INVESTIGATION The investigations of quality of water upon which this report is based were begun in the summer of 1940. They were made in connection with studies of water resources of the area conducted by the United States Geological Survey, under the direction of S. F. Turner. Cooperative funds were furnished by the Arizona State Land Commission, the Corps of Engineers, and the Office of Indian Affairs. A branch laboratory was established in Safford, Ariz., in July 1940, and samples of water collected during the work in the area were analyzed there until the investigation was curtailed in June 1942. A few samples collected in 1942 and 1943 were analyzed in the Geological Survey laboratory in Roswell, N. Mex. Work was resumed in the basin by the Geological Survey in April 1943 with funds supplied by the Defense Plant Corporation to study the effects on water supply of bottom-land vegetation in the lower Safford Valley and the practicability of providing an additional supply of water for the basin by removal of at least a part of the dense bottom-land growth. This investigation was of a highly specialized nature, and only a part of the Gila River Basin above Coolidge Dam was studied. The Safford laboratory was reestablished in June 1943 and operated until the end of 1944, when the investigation was discontinued. The analyses of samples collected between January 1, 1940, and December 31, 1944, are tabulated in this report, and brief discussions are given of the analyses and of some of the more important quality-of-water problems in the basin. These analyses may be helpful in the consideration of present or proposed future uses of water in the basin. More comprehensive discussions of special phases of quality of water in lower Safford Valley, relating particularly to effects of plant growth, are included in a report 1 covering work done in the area in 1943 and 1944 by the Geological Survey. ¹ Gatewood, J. S., Robinson, T. W., Colby, B. R., Hem, J. D., and Halpenny, L. C., Use of water by bottom-land vegetation in lower Safford Valley, Ariz.: U. S. Geol. Survey Water-Supply Paper 1103, 1950. # ACKNOWLEDGMENTS The investigations in the upper Gila River Basin were made in cooperation with the ground water branch and the surface water branch of the Geological Survey. The writer is particularly indebted to S. F. Turner for his assistance in furnishing information regarding the ground water resources of the area and to C. S. Howard for reviewing the manuscript. A. T. Barr and other Phelps Dodge Corp. employees, Thomas Maddock, Sr., of Safford, and other residents of the basin gave assistance in various ways. Most of the analyses in this report were made by J. D. Hem and R. T. Kiser, but some were made by D. C. Lillywhite and R. L. White. # LOCATION AND DESCRIPTION OF THE AREA #
PHYSIOGRAPHY The area considered in this report is sometimes referred to as the upper Gila River Basin. It includes an area of 12,890 square miles in southwestern New Mexico and southeastern Arizona drained by Gila River and its tributaries above Coolidge Dam. This area represents about one-fifth of the entire Gila River Basin. The northeastern half of the area covered in this report is mostly rugged and mountainous, with occasional peaks having altitudes of nearly 11,000 feet. At the New Mexico-Arizona State line the river bed is at an altitude of about 3,800 feet. The remainder of the basin has topography typical of the Basin and Range physiographic province, of which it is a part. It has wide and comparatively flat valleys between narrow but rugged mountain ranges trending generally in a northwest-southeast direction. The river has cut narrow canyons through these mountain ranges in passing from one valley to another, and it is in such a canyon, in the Mescal Range, that Coolidge Dam has been built to store water for irrigation of land along the river below. The lowest point in the area covered by this report is at Coolidge Dam, where the altitude of the river bed is 2,310 feet. After flowing through an extensive series of canyons and small valleys in the mountains of southwestern New Mexico, Gila River enters the first of the major valleys near the mouth of Blue Creek, in the southwestern corner of Grant County, N. Mex. The irrigated portion of this valley is known locally as the Duncan-Virden Valley, from its two principal settlements, and is a part of the structural trough that extends from the vicinity of Clifton, Ariz., southeastward to the vicinity of Lordsburg, N. Mex. The valley is bounded on the south by a few small hills and an indefinite alluvial divide. On the north and east is Steeple Rock Mountain and on the west the Pelon- cillo Mountains. The river flows through this valley for about 40 miles and enters a series of canyons cut in the northern end of the Peloncillo Mountains about 6 miles above the gaging station at the bridge on United States Highway 666 south of Clifton, Ariz. In the canyon section below the bridge the river is joined by three major tributaries, San Francisco River, Eagle Creek, and Bonita Creek, which drain mountain areas to the north. About 2 miles below the mouth of Bonita Creek, Gila River emerges into another large valley through which it flows for more than 80 miles to Coolidge Dam. this valley Gila River is joined by two major tributaries, San Simon Creek and San Carlos River, and for convenience of discussion in this report this valley has been considered in three parts. The first part, the area drained by San Simon Creek, is bounded on the east by the Peloncillo Mountains and on the west by the Chiricahua, Dos Cabezas, and Pinaleno Mountains and is referred to as the San Simon The second part is the area drained by Gila River between the mouth of Bonita Creek and the Southern Pacific Railroad bridge at Calva and is bounded on the northeast by the Gila Range and on the southwest by the Pinaleno, Santa Teresa, and Turnbull Moun-The irrigated portion of the area is locally referred to as the Safford Valley. The third area is drained by San Carlos and Gila Rivers and is bounded on the northeast by the Gila Range and by the Mescal, Haves, and other ranges on the southwest, west, and north. This area is occupied in part by the San Carlos Reservoir. The general geographic features of the area covered by this report are shown on plate 1, a map of the entire Gila River Basin above Coolidge Dam. For the Safford Valley, where the most intensive studies were made, a large map (pl. 2) was prepared on a scale of 2 miles to the inch. # POPULATION The population of the basin in 1944 was estimated to be about 40,000. This indicates a population density of about three persons to the square mile, but there are large areas in the basin that are entirely without permanent human habitation. The population is largely concentrated in areas where land can be irrigated or where there are large mines and processing plants to extract metals from the ores. The largest incorporated town in the basin in 1944 was Safford, with a population of about 3,500. The mining town of Morenci, with a population of 5,000 or more, was not incorporated. The adjoining town of Clifton had a population of about 2,500, and Duncan, principal settlement in the valley bearing its name, had about 1,000 inhabitants in 1944. Other important but smaller settlements included Bowie, San Simon, and Rodeo in the San Simon Valley, and Solomonsville, Thatcher, Pima, and Fort Thomas in the Safford Valley. Except for widely scattered ranches and small mining operations and the Indian settlements on the San Carlos Reservation, the remaining population of the basin is located mainly on farms in districts where water is available for irrigation. # TRANSPORTATION The north or old main line of the Southern Pacific Railroad from El Paso to Tucson passes across the upper end of the San Simon Valley through the towns of San Simon and Bowie, and the south line, formerly the El Paso Southwestern, now a part of the Southern Pacific system, crosses the basin at Rodeo, N. Mex. From Lordsburg, N. Mex., a branch railroad extends northwestward into the basin to Duncan from where it extends down the lower part of the Duncan-Virden Valley and up the foothills to Clifton. Another branch line leaves the main line at Bowie and extends northwestward to Safford, from where it goes down the Safford Valley into the San Carlos Indian Reservation and crosses the San Carlos River Valley to Globe and Miami. United States Highway 70, a heavily traveled paved route, crosses the basin from Lordsburg, passing through Duncan and Safford to Coolidge Dam. United States Highway 80 and Arizona State Highway 86, which are paved, cross the San Simon Valley. United States Highway 666, which is a graveled road for most of its length, crosses the basin from north to south, passing from Alpine, Ariz., at the northern edge of the basin, through Clifton and Safford and reaching Arizona State Highway 86 near Bowie, which it follows out of the United States Highway 260, a graveled and paved route, connects Alpine, Ariz., with Silver City, N. Mex., passing through the mountainous part of the drainage basin in New Mexico. Arizona State Highway 75, which is paved, connects Clifton and Morenci with United States Highway 70 at Duncan. Other improved roads, some of which are designated as State highways, provide communication in other parts of the basin. However, in many of the mountainous or thinly settled regions the few existing roads are poor and at times almost impassable for automobiles. # HISTORY AND DEVELOPMENT Probably the first white man to visit the basin was Fray Marcos de Niza, Spanish explorer and missionary, who is reported to have come to this part of Arizona in 1539. Coronado's expedition of 1540 entered the basin from the San Simon Valley, passing down it to Gila River, up Gila and San Francisco Rivers past the present site of Clifton, and into New Mexico. The area was visited by many traders, explorers, and missionaries in subsequent years. Part of it was ceded to the United States in 1848 after the Mexican War, and the southwest portion, south of Gila River, was included in the Gadsden Purchase of 1853. Shortly after the Civil War valuable mineral deposits were found near Silver City, N. Mex., and in 1870 prospectors found rich copper and placer gold deposits in the area farther to the west near where Clifton now stands. This region near Clifton has been the scene of extensive mining activity since that time, and the Clifton-Morenci district is now one of the most important copper-producing areas in the United States. The first irrigation of land in the basin was begun about 1872 by Mexican immigrants and Mormon pioneers in the Safford Valley, and later irrigation was begun in the Duncan-Virden Valley. The acreage irrigated with river water increased until 1920 and since then has remained about constant. In 1944 about 32,500 acres in the Safford Valley and about 8,000 acres in the Duncan-Virden Valley were irrigated with water from Gila River. In addition, small scattered areas in other parts of the basin were irrigated by surface waters or by water obtained from deep flowing wells or pumped from nonflowing wells. Cotton and alfalfa are the principal crops. Vegetables of various kinds are also grown, especially in the Duncan-Virden Valley, and corn and small grains and fruits are raised to some extent. # CLIMATE AND VEGETATION The climate of the basin ranges from cool and subhumid in the higher mountain ranges to warm and arid in the valleys. In the mountains above an altitude of approximately 7,000 feet snow is common from November to April, and the total annual precipitation may exceed 20 inches. There pine and other commercially valuable timber grow thickly. In the valleys climate and vegetation are very different from those of the mountains. At Thatcher, which is at an altitude of 2,800 feet, the mean annual temperature is 62.5°, snowfall is rare, and the annual precipitation averages 9.5 inches. frost-free period averages 203 days a year. At the lower altitudes the native vegetation is typical of southern Arizona desert regions; creosotebush, yucca, mesquite, pricklypear, cholla, barrel cactus, and ocotillo are prevalent. The sahuaro or giant cacus is common in the lower part of the basin and reaches its northeastern limit in a grove on a group of basalt hills about 5 miles north of Fort Thomas. Juniper and live oak and some grasses occur at altitudes of 5,000 to 7,000 feet, and after rainy periods annual grasses spring up in the valleys. Along Gila River and its tributaries where water is plentiful, cottonwood, willow, and sycamore trees are found. Some bottom-land areas are covered by growths of batamote. Saltcedar (Tamarix gallica) has been introduced
into the basin within the past 40 years, and large areas in the bottom land that once were barren or covered by native growth are now occupied by saltcedar. This plant thrives in the area and has grown up in dense junglelike thickets. # RAINFALL AND RUNOFF The precipitation in the basin falls during two rather poorly defined seasons. Generally most of the rain is received in the form of violent local thunderstorms from July to September, and slower rains which may last several days occur at times during the winter months from December to March. These slower rains generally bring increased amounts of moisture to higher altitudes, often in the form of snow. Little rain falls from April to June. Because of high evaporation rates and use of water by vegetation, only a very small percentage of the precipitation in the drainage basin reaches Gila River as runoff. The summer storms, however, are often violent and cause sudden flash floods in dry washes in local areas and at times cause sudden and large changes in discharge of the river. It is only during unusually wet winter seasons that large amounts of runoff originate in the high mountains, but it is generally in such seasons that the largest flood flows in Gila River and the largest inflow into the San Carlos Reservoir occur. The volume of the summer floods is generally not large, because the high flows are of short dura-Total runoff from the basin varies widely from year to year. Maximum annual discharge of Gila River recorded at or near the present site of Coolidge Dam from 1901 to 1944 was 1,760,000 acrefeet in 1915. Minimum annual discharge up to 1929, the year when storage in San Carlos Reservoir began, was 65,900 acre-feet; this A peak flow of about 130,000 second-feet was occurred in 1922. recorded near the dam site on January 20, 1916. # LAND USE Attempts to dry-farm parts of the basin and adjoining areas have been made but have been unsuccessful because of the low rainfall in most of the basin. Where sufficient water is available and the soil fertile, most crops grow very well. In areas where water is not available for irrigation the land is used for grazing, but as a result of recurring drought and over grazing there is not sufficient forage on most of the land to support large numbers of animals. In some parts of the basin the scarcity of water for livestock curtails use of range land. # GEOLOGIC STRUCTURE The geology of the northern and eastern parts of the Gila River Basin above Coolidge Dam has been studied in detail only in the rather small areas comprising the important mining districts. The geologic maps of the States of Arizona and New Mexico which have been published by the Geological Survey indicate that the rocks exposed in most of the upper part of the basin are of volcanic origin. The rocks include lavas of various types and pyroclastic deposits, such as breccias, tuff, and volcanic ash. The geology of the Safford and Duncan-Virden Valleys and of the San Simon Valley is discussed in previous reports.² The following brief summary of the geologic conditions in these parts of the basin is based on these more detailed reports. The Safford, San Simon, and Duncan-Virden Valleys are of structural origin and came into existence in the Tertiary period as a result of extensive faulting. The large undrained depressions that resulted from these disturbances were filled, in some places to a depth of more than 1,000 feet, with sediments derived from the surrounding highlands. The coarser materials were dropped near the outer edges of the basins, and the finely divided materials were carried to the central lower portions. Lakes or playas existed in the lowest parts of these depressions during a part of this period of development of the present topography. The central lake-bed deposits thus were built up, containing clay and silt and smaller amounts of gypsum, diatomite, bentonite, and in some places limestone, salt, and volcanic ash. Outlets for the basins were formed later, and Gila River established itself in the area, eroding and removing the Tertiary and Pleistocene valley-fill sediments that had been deposited. Graded slopes toward the interior of the basins were cut in pediment fashion upon the valley fill. Two main terraces generally separated by scarps were formed in the Safford Valley. A trough varying in width from a quarter of a mile to nearly 3 miles was excavated by the river below the lower terrace in the major river valleys and was later filled to a depth of 100 feet or less with alluvium deposited by the river and its tributaries. The cultivated portions of the Safford and Duncan-Virden Valleys are underlain by this Recent alluvium. The present river flood channel has been cut in the Recent alluvium and is a quarter of a mile to half a mile wide in most of the Safford Valley but is narrower in the Duncan-Virden Valley. Gila River itself is not eroding the older fill in most parts of the basin at present, but San ² Turner, S. F., and others, Water resources of Safford and Duncan-Virden Valleys, Ariz. and N. Mex., 50 pp., U. S. Geol. Survey, 1941. [Mimeographed in small quantities, now exhausted. Copies on file in offices of Geological Survey at Phoenix, Safford, and Tucson, Ariz., and at Washington, D. C.] Knechtel, M. M., Geology and ground-water resources of the valley of Gila River and San Simon Creek, Graham County, Ariz.: U. S. Geol. Survey Water-Supply Paper 796–F, pp. 188–205, 1938. Schwennessen, A. T., pp. 6–9, 1919. Simon Creek and some of the other tributaries are actively attacking them. Water-bearing beds of major importance in the valleys include tongues of sand and gravel in the Tertiary and Pleistocene valley-fill deposits and lenses of sand and gravel in the Recent alluvial fill along the river and its tributaries. # PREVIOUS INVESTIGATIONS A number of published reports contain data on the chemical character of surface and ground waters of the basin. Schwennessen 3 investigated the San Simon Valley and the San Carlos Indian Reservation within the basin, and his reports contain analyses of ground waters and of a few surface waters in these areas. Knechtel 4 studied the Gila and San Simon Valleys in Graham County, and his report contains a considerable number of analyses of ground waters from the Safford Valley and from the San Simon Valley. A few other analyses of water samples from the area are contained in earlier Geological Survey publications. Moderately detailed analyses of samples collected in 1905-6 from San Francisco River at Alma, N. Mex., and from Gila River a short distance above the present site of Coolidge Dam have been published.⁵ It is likely that development of the basin and increases in the amount of water used for irrigation have changed conditions in the area so much that the analyses for Gila River near San Carlos for 1905 and 1906 do not represent present conditions. Analyses for most of the surface-water samples collected in the area since 1940 have been published.⁶ They have been briefly summarized in the present report, and many additional surface-water analyses have been included which have not been published before. Some of the analyses of ground waters have been released in mimeographed form,⁷ and are repeated in this report. Results of studies made by the Geological Survey in the Safford and Duncan-Virden Valleys between 1939 and 1942 are outlined in ³ Schwennessen, A. T., op. cit.; Geology and water resources of the Gila and San Carlos Valleys in the San Carlos Indian Reservation, Ariz.: U. S. Geol. Survey Water-Supply Paper 450-A, 1921. ⁴ Knechtel, M. M., op. cit. ⁵ Stabler, Herman, Some stream waters of the western United States: U. S. Geol. Survey Water-Supply Paper 274, pp. 40-42, 118-120, 1911. ⁶ Quality of surface waters of the United States: U. S. Geol. Survey water-supply papers beginning with 1941. (Nos. 942, pp. 62-64; 950, pp. 46-47; 970, pp. 148-167; 1022, pp. 227-241, 249-275, 278-305; 1030, pp. 320-322, 325-326, 329.) ⁷ Morrison, R. B., McDonald, H. R., and Stuart, W. T., Safford Valley, Graham County, Ariz., Records of wells and springs, well logs, water analyses, and maps showing locations of wells and springs, 102 pp., U. S. Geol. Survey and Arizona State Water Comm., 1942. [Mimeographed.] Morrison, R. B., and Babcock, H. M., Duncan-Virden Valley, Greenlee County, Ariz., and Hidalgo County, N. Mex., Records of wells and springs, well logs, water analyses and map showing locations of wells and springs, 29 pp., U. S. Geol. Survey and Arizona State Water Comm., 1942. [Mimeographed.] a mimeographed report, which contains some analyses of surfacewater and ground-water samples and a brief discussion of the quality of water of the area. The more detailed investigations in lower Safford Valley that were conducted in 1943 and 1944 are described in another report, which contains discussions of the relation of bottom-land growth to quality of water in the area and has only the few analyses that were particularly useful in the problems considered in that investigation. During 1946 further investigations were made by the Geological Survey in four parts of the Gila River Basin above Coolidge Dam in Arizona in connection with a State-wide investigation of ground-water basins. The results of these studies are summarized in mimeographed reports, 10 each of which contains a few analyses of typical ground waters and a brief discussion of the quality of water in the area covered. The present report contains more than 3,000 analyses made from 1940 to 1944 which have never been published. No results of the 1946 studies are included, but only a comparatively small number of samples were collected that year in the Gila River Basin above Coolidge Dam. # METHODS OF QUALITY-OF-WATER INVESTIGATION NUMBER AND FREQUENCY OF SAMPLES # SURFACE WATER For a detailed study of the quality of the water resources of a large area such as the upper Gila Basin it is necessary that a large number of samples from many
sources be collected and analyzed. This is especially true when reliable information concerning the quality of surface waters is desired, because the amounts and kinds of mineral matter carried in solution by a stream at any point may vary from time to time. The magnitude of the variations depends upon the magnitude and rate of changes in stream flow, nature of the rocks exposed in the drainage basin, and, to some extent, upon the ground water inflow and waste disposal into the stream. A single sample from a stream is not likely to show accurately the chemical character of water that might pass the sampling point over a long period of time. The variation in quality of water carried by Gila River is ⁸ Turner, S. F., and others, op. cit. Gatewood, J. S., Robinson, T. W., Colby, B. R., Hem, J. D., and Halpenny, L. C., op. cit. ¹⁰ Halpenny, L. C., Babcock, H. M., Morrison, R. B., and Hem, J. D., Ground-water resources of the Duncan Basin, Ariz., U. S. Geol. Survey, 1946. [Mimeographed.] Turner, S. F., and others, Ground-water resources and problems of the Safford Basin, Ariz., U. S. Geol. Survey, 1946. [Mimeographed.] Cushman, R. L., and Jones, R. S., Geology and ground-water resources of the San Simon Basin, Cochise and Graham Counties, Ariz., U. S. Geol. Survey, 1947. [Mimeographed.] Halpenny, L. C., and Cushman, R. L., Ground-water resources and problems of the Cactus Flat-Artesia area, San Simon Basin, Ariz., U. S. Geol. Survey, 1947. [Mimeographed.] particularly large, with maximum concentrations due to large amounts of inflow of rather highly mineralized ground waters and with minimum concentrations due to flood inflows of surface-water runoff The extent of the variations in concentration of Gila River waters at Safford is shown in figure 1. In this illustration the chloride concentrations of daily samples collected during September 1944 are plotted with daily mean discharges of the river at Safford. The wide range in chloride content during the month shows clearly the need for frequent sampling. In general, the lowest concentrations at Safford occur at times of flood flows, and highest concentrations occur at times of low flow. Investigations made by the Geological Survey to determine the chemical character of surface waters provide for the collection of daily samples at several points along the streams being studied. These samples are analyzed to supply a maximum amount of information with a reasonable expenditure of time and money. One constituent or characteristic generally is determined for each of the daily samples, and the remaining water is then combined into a series of composite samples for each sampling station. The usual procedure is to have a composite sample for the first 10 days of a month, a second composite for the second 10 days, and a third composite for the remaining 8 to 11 days of the month. A complete analysis is made for each composite sample. By continuing the collection of ' samples at a point for a period of years, it is possible to obtain a reasonably complete set of figures for the quality of water of the stream, under the conditions at that point. The analyses of river water are significant only when they can be correlated with stream flow at the sampling point. For this reason it is desirable to collect river samples at or near a gaging station where stream-flow records are collected. A program of daily sampling of Gila River at Safford was begun in August 1940. This sampling station was maintained continuously until November 20, 1944. Discharge records for the river at Safford were obtained by the ground water branch until July 1942 and subsequently by the surface water branch. In June 1943 daily sampling of Gila River was begun at the gaging stations near Solomonsville and Bylas and on San Francisco River at Clifton. The sampling at Bylas and Solomonsville was continued to December 1944 and that at Clifton to October 1944. A summary of the records obtained as a result of these programs is included in this report and provides a basis for an evaluation of the quality of surface waters of the basin in the areas where they are most extensively utilized. Additional information was obtained for Gila River, including diversions and tributaries, in part of the basin by systematic sampling at less frequent intervals at temporary gaging stations in Safford Valley and at various FIGURE 1.—Daily chloride concentration and daily mean discharge of Gila River at Safford, Ariz. points in the basin where stream flow was measured in 1940, 1941, 1943, and 1944. The analyses tabulated in this report provide detailed information on the quality of most of the surface waters of the basin. # GROUND WATER In a careful study of quality of ground waters in an area it is necessary to collect and analyze a large number of samples from many different sources. It is essential that these samples be taken so that they represent the ground water in the formation that supplies the well or spring. When a well is sampled it is desirable to obtain the sample directly from the well discharge, after sufficient water has been removed to insure that it is coming directly from the aquifers that supply the well. In numerous instances where it is necessary to sample an unused well that is not equipped with a pump and the sample is obtained by bailing, this sample may be contaminated by inflow of surface drainage or may have been altered in composition by standing for a long time in contact with the well casing. Although a ground-water source usually yields water of practically constant composition for long periods, it is sometimes desirable to collect additional samples from some ground-water sources from time to time to detect and follow changes in concentration and chemical character. A number of ground-water sources in the basin were sampled several times between 1940 and 1944, and in 1943 and 1944 about 75 observation wells in the lower Safford Valley were sampled at bimonthly intervals. Analyses of these samples indicate the extent to which changes may occur in the chemical character and concentration of ground water from single sources. In some of the observation wells the changes were rather large. The extent of fluctuations in concentration for three observation wells in Safford Valley is shown in figure 2. The illustration also shows the changes in elevation of the water table that occurred during the period of sampling. There is little correlation between changes in concentration and changes in water level for these wells. In contrast to the analyses shown in figure 2, the changes in concentration observed in samples from deeper wells and those half a mile or more from the river were usually small, # METHODS OF ANALYSIS After their receipt in the laboratory, surface-water samples were allowed to stand until all suspended matter had settled. The specific conductance of each daily sample was then determined. The specific conductance of a water is directly related to the total concentration of dissolved mineral matter in the water. The determination is made by drawing up a portion of the water sample into a standard cell equipped with two fixed platinum plates between which an alternating current is passed. The resistance of the water to the passage of the current is measured by means of a Wheatstone bridge and corrected for temperature. The reciprocal of this corrected resistance is the specific conductance in reciprocal ohms. The figure is multiplied by FIGURE 2.—Specific conductance and elevation of water table for three typical observation wells, Safford Valley, Ariz. the factor 10^5 to eliminate inconvenient decimals and is reported as specific conductance (K· 10^5 at 25° C.). Although it provides a useful indication of the total amount of dissolved matter present in a water sample, this determination gives no specific information as to exact amounts of any given constituent that is present. For this reason the results are of value chiefly in showing changes in concentration of the dissolved solids of the water from a certain source and in determining the procedure that should be followed in making up composite samples. When changes in concentration of dissolved matter in the stream occur, it is desirable to make the composites in such a way as to show the extent and nature of the change that occurred, and a composite period is selected so as to include in the composite sample only those daily samples for which the maximum daily concentration as measured by the conductance is less than twice the minimum daily concentration. At some of the daily sampling stations in the area the variations in concentration from day to day are very large during periods of varying flow, as shown by figure 1. For most of the composites of daily river samples complete analyses were made, including the following determinations: residue on evaporation, loss on ignition, silica, iron, calcium, magnesium sodium, potassium, alkalinity as carbonate and bicarbonate, sulfate, chloride, fluoride, nitrate, and borate. Dissolved solids was calculated from the sum of the determined constituents. Total hardness, noncarbonate hardness, and percent sodium were computed. Similar analyses were made for a few samples of ground waters that were representative of the type of water occurring in large parts of the basin. These complete analyses showed the proportions of the various constituents present in surface waters of the basin under different conditions of flow and in a general way the chemical character of much of the ground water of the basin. To supplement these data many samples of surface waters and ground waters were analyzed less completely, all significant constituents being determined except sodium and potassium, which was calculated as sodium. Many samples were collected from miscellaneous surface sources and from observation wells for the purpose of following changes in concentration, and for such samples the only
determinations made were of those constituents and characteristics which showed the greatest change, such as conductivity, alkalinity, chloride, sulfate, and hardness. Analytical procedures followed in all instances were those commonly used by the Geological Survey.¹¹ # EXPRESSION OF RESULTS In general the water analyses in this report are expressed in terms of parts by weight of dissolved matter per million parts of water. Probably most users of quality-of-water data are more familiar with this form of expression than with any other. However, the expression of a chemical analysis in such a manner has a basic disadvantage for ¹¹ Collins, W. D., Notes on practical water analysis: U. S. Geol. Survey Water-Supply Paper 596-H, 1928, certain uses in that equal concentrations of the various constituents are not chemically equivalent. Sometimes it may be desirable to express all constituents of a water in such a manner as to avoid this difficulty. When a water analysis is reported in terms of equivalents per million, a unit of any constituent is chemically equivalent to a unit of any other constituent. Parts per million may be converted to equivalents per million by dividing the concentration value in parts per million by the equivalent weight of the constituent. Instead of dividing by the equivalent weight it is generally more convenient to multiply by its reciprocal as given in the following list of factors for converting analyses in parts per million to equivalents per million: | Calcium | 0. 0499002 | Sulfate | 0. 0208190 | |-------------|------------|----------|------------| | Magnesium | 0822368 | Chloride | 0282032 | | Sodium | 0434839 | Fluoride | 0526316 | | Potassium | 0255781 | Nitrate | 0161270 | | Ricarbonate | 0163886 | | | Analyses shown graphically in this report are expressed in equivalents per million. In the tables of analyses in this report specific conductance is reported in reciprocal ohms multiplied by 10 ⁵. Percent sodium is computed by dividing 100 times the equivalents per million of sodium in the water by the sum of the equivalents per million of calcium, magnesium, sodium, and potassium present. Concentrations of dissolved solids are expressed both in parts per million and tons per acre-foot. All other constituents are reported in parts per million. Annual weighted average analyses have been computed for river stations where samples were taken daily and for which discharge and sampling records are available for a year or more. These averages were computed by multiplying the determined quantity of each constituent of each composite sample by the discharge of the stream for the period of the composite and dividing the sum of these products by the sum of the discharge values for the year. The weighted average analysis represents approximately the composition of all the water that passed the gaging station during the year, had the water been collected in a large reservoir and thoroughly mixed. Because equal volumes of each sample were used in making up the composites, these composites do not represent exactly the average composition of the water passing the station in the period. However, most of this error is eliminated by shortening the composite period in periods of widely fluctuating discharge. Data are included in the tables for seepage studies giving the discharge at the sampling point and the measured amount of flow in the diversions and inflow from surface-water and ground-water sources for each reach of river studied. Discharge values reported in these tables have not been adjusted for diurnal or other changes in flow. For samples of ground water a description of the source of the sample is given, including the location to the nearest sixteenth of a section in areas which have been surveyed and, in most instances, the depth of the well, the flow or yield on pumping, and the temperature of the water. Observation wells driven in the bottom land in lower Safford Valley in 1943 are identified in the tables by numbers assigned to them according to the following system: The bottom land between Thatcher and the San Carlos Indian Reservation was divided into 22 "zones," each 1 mile wide and extending across the bottom land. The boundaries of the zones corresponded to the surveyed section lines. Within each zone wells were driven to shallow depths (generally 20 to 30 feet) spaced about 500 feet apart. The zones were numbered from 1 to 22, starting at Thatcher, and in each zone the wells were numbered starting with 1. The numbers finally assigned include the zone number followed by the number of the well within the zone. For example, observation well 19-22 is well 22 in zone 19. A metal collar bearing the number was attached to the top of the casing of each observation well for purposes of identification. As a means of differentiating wells with similar location descriptions in the tables, those put down by the United States Geological Survey have USGS preceding the numbers. These are numbers assigned by the ground-water branch of the Geological Survey. The yield on pumping indicated for observation wells is of significance mainly in indicating the condition of the well-point screen and to some extent in indicating the water-yielding properties of the formation supplying the well. During the investigation the well points in certain areas in the bottom land gradually became clogged with finely divided silt and with calcium carbonate deposited by the ground water. # SOURCES OF DISSOLVED MATTER IN SURFACE AND GROUND WATERS # COMMON CONSTITUENTS OF THE DISSOLVED MATTER Water which falls as rain or snow may be considered to contain negligible quantities of dissolved mineral matter. As soon as the water reaches the ground, however, it begins to dissolve minerals from rocks and soil, so that surface runoff from storms in the basin contains appreciable, though generally small, amounts of dissolved matter. Water that percolates through the upper layers of soil or rock to reach the ground-water reservoir has a better opportunity to dissolve minerals from the rock material with which it comes in contact because its movement is slower than that of water that runs off the ground surface. For this reason ground waters of the Gila River Basin normally contain more dissolved matter than the surface waters in the same area. Most natural waters contain calcium, magnesium, sodium, bicarbonate, sulfate, and chloride in appreciable amounts, but the amounts and kinds of dissolved salts carried by surface and ground waters are greatly influenced by the kinds of rock with which the waters have come in contact. Some of the rock constituents are readily soluble whereas others are dissolved very slowly. Interpretations of the results that have been obtained in this investigation may be aided by consideration of the types of rocks with which waters in different parts of the basin may have come in contact and the duration of the contact. # SOLUBLE MATTER IN HARD ROCKS In the area above the Duncan-Virden Valley and in much of the mountainous northern part of the Gila River Basin the rocks are largely of volcanic origin. The surface runoff and the ground waters in these areas normally contain small amounts of dissolved mineral matter. This is illustrated by the low mineral content of streams like Eagle Creek or Gila River in New Mexico, both at high and low stages of flow. The dissolved matter in these waters consists of calcium, magnesium, and bicarbonate for the most part, with appreciable amounts of silica. In areas of this kind ground waters of high mineral content may occur under conditions such as those at the Clifton Hot Springs, which issue from a fault zone. The water from such springs probably rises from a great depth, and under the conditions of high temperature and pressure the waters dissolve mineral matter more readily. Water found in areas of granitic rocks like those that occur in the mountains southwest of the Safford and San Simon Valleys is also likely to be of low mineral content. Although probably most of the hard rocks exposed in the high mountainous areas of the basin are igneous, there are areas of limestone and other old sedimentary rocks that may be somewhat soluble or may contain easily soluble material included with the sediments, and both surface and ground waters from such areas may contain appreciable amounts of dissolved solids. # SOLUBLE MATTER IN VALLEY-FILL DEPOSITS Because of their manner of deposition, the Tertiary and Pleistocene valley-fill deposits in the Gila River Basin contain in places considerable amounts of soluble matter. Common salt and gypsum occur frequently in the lake beds in the Tertiary and Pleistocene valley fill, and in certain areas where such beds are near the surface storm runoff may carry considerable quantities of dissolved matter, as in the basins of San Simon Creek and Matthews Wash. As a result of the leaching and erosion of these deposits by tributaries and side washes, appreciable quantities of soluble matter are brought into Gila River each year to form part of the load of dissolved solids carried out of the basin. Appreciable quantities of dissolved matter also reach the river in the discharge from the artesian wells and springs in the basin. water from these sources may be used for irrigation or may seep into the Recent alluvium in the valleys without being used. In either instance it eventually joins shallow ground water, adding to its mineral content, and finally reaches the river as inflow. likely that a large part of the mineral content of the water in Gila River passing the Calva gaging station originated from the lake-bed deposits in the basin, particularly those below the mouth of Bonita In general, the lake-bed deposits in the Duncan-Virden area contain somewhat less soluble matter than those in the Safford area. This is indicated by the lower content of dissolved matter in the ground and surface waters sampled in the Duncan-Virden Valley. The
nature of the soluble matter also seems to be different, with sulfates predominating in the Duncan-Virden area and chlorides predominating in the Safford Valley. # UNUSUAL CONSTITUENTS OF THE DISSOLVED MATTER FLUORIDE The waters of the Gila River Basin are unusual in several respects. One outstanding characteristic is the high fluoride content frequently found in both surface and ground waters. # GILA RIVER It was only infrequently that any samples from Gila River contained less than 1 part per million of fluoride. Only a few determinations of fluoride were made for samples collected from Gila River above the mouth of San Francisco River, but all showed concentrations of fluoride of more than 1 part per million. Weighted average analyses for the 1944 water year show that San Francisco River had a concentration of 0.7 part per million of fluoride, and Gila River near Solomonsville had 1.3 parts per million. At Safford and Bylas the average fluoride concentration was about the same as at Solomonsville. It would appear that the main source of the fluoride in the river is above Safford Valley and is not in the San Francisco drainage area. The waters of Eagle and Bonita Creeks contain only small amounts of fluoride. Although the water from the Gillard Hot Springs is high in fluoride, the flow of the springs is small, and the total quantity con- tributed from this source is not very significant. Only a few determinations of fluoride have been made for samples collected from the river in the Duncan-Virden Valley or above, but it seems likely from the available information that the high concentrations of fluoride originate above the Duncan-Virden Valley. The many hot springs in that area probably contribute some fluoride, but as no analyses are available the amount cannot be estimated. Surface runoff in the area above Duncan seems to contain appreciable amounts of fluoride. Even at the highest stage reached by the river at Safford during the period of sampling, a peak flow of 33,000 second-feet on September 30, 1941, the fluoride content of the water was 1.2 parts per million, although the total dissolved solids was only 233 parts per million. The water of this flood originated in storm runoff in the Gila drainage area above Duncan. Flood waters from other parts of the basin seldom contain as much as 1 part per million of fluoride. It seems likely therefore that dissolved fluoride minerals are carried into the river by surface runoff and add to the concentrations of the water passing Duncan at high flows, and that ground water inflows maintain the high fluoride content of the river water at times of low flow. # GROUND WATERS Analyses in this report show very high concentrations of fluoride in ground water in certain sections of the Gila River Basin and rather high concentrations in most of the ground waters of the basin. Highest concentrations of fluoride seem to occur in areas where water-bearing valley fill was derived from rocks of a granitic type, such as those in the Pinaleno and Dos Cabezas Mountains. These granitic rocks may contain fluoride-bearing minerals that give up soluble fluorides on decomposition. Because precipitation on these high mountains contributes much of the recharge for the artesian reservoir of the Safford and San Simon Valleys, the deeper ground waters in these areas and other waters that have received some leakage from artesian aquifers may contain rather large amounts of fluoride. Generally, the volcanic rocks in the lower part of the basin yield waters low in fluoride, but in the Duncan-Virden Valley, where volcanic rocks are prevalent, waters high in fluoride are common, especially the deeper ground waters. The mineral fluorite, crystalline calcium fluoride, is mined within the basin above Duncan. Lake beds in the Duncan-Virden Valley may have received some material eroded from these deposits. # BORATE During 1943 and 1944 determinations of borate were made for many surface and ground water samples collected in the basin. In general, the results of these determinations indicate that surface waters in the basin are free from excessive concentrations of borate but that large amounts are found in ground waters of some areas, particularly in the lower Safford Valley. The higher concentrations of borate were found generally in water from the lake-bed formations in the older valley fill or in the shallow ground waters that had been contaminated with water from the underlying lake-bed formations. In most instances the extremely high concentrations of borate were found in waters of high mineralization. Concentrations as high as 30 parts per million, of borate, expressed as BO₃, were found in ground waters in the area near the mouth of Markham Wash in the Safford Valley in waters containing more than 6,000 parts per million of dissolved solids. However, 10 to 20 parts per million of borate were found in some of the ground waters with concentrations of 2,000 to 5,000 parts per million of dissolved solids occurring near the north edge of the valley from Thatcher downstream to the mouth of Markham Wash. Some of the higher concentrations of both borate and fluoride were found in the part of the Safford Valley north of Pima, and it is possible that this may indicate some artesian leakage in the area, since artesian waters found near Pima have rather large amounts of fluoride and borate in solution. # CHEMICAL CHARACTER OF SURFACE AND GROUND WATERS OF THE BASIN, DISCUSSED BY AREAS # GRANT COUNTY, N. MEX. # SURFACE WATER The only samples of surface water taken in this area were those from Gila River below Blue Creek, near Virden, N. Mex. Analyses of these samples are tabulated with analyses for lower stations on the river. They indicate that the Gila River water at the mouth of Blue Creek is of low mineral content and contains mostly calcium and bicarbonate. # GROUND WATER Analyses 82 to 86 are the only ones available for ground waters in the part of the Gila River Basin in Grant County. The area is for the most part rugged and mountainous and is thinly populated. Few wells exist. All the analyses given are for springs. The ground waters analyzed contained small to moderate amounts of dissolved matter, consisting mainly of calcium and bicarbonate. A considerable number of hot springs occur along the upper reaches of Gila River in New Mexico, some of which are rather large. One, Gila Hot Springs, has a reported discharge of 900 gallons a minute. ¹² None of these springs are accessible by road, and as none were visited ¹² Stearns, N. D., Stearns, H. T., and Waring, G. A., Thermal springs in the United States: U. S. Geol. Survey Water-Supply Paper 679-B, p. 169, 1937. by the writer during the investigation no analyses are available. With the possible exception of these hot springs, it is likely that ground waters in the Gila Basin in Grant County are no more concentrated than those for which analyses are given. # GILA RIVER BASIN FROM THE MOUTH OF BLUE CREEK TO THE BRIDGE ON UNITED STATES HIGHWAY 666 # SURFACE WATER SEEPAGE STUDIES No river-sampling stations were operated regularly above the bridge on United States Highway 666 during the investigation, and the only existing data on the chemical character of water of Gila River in this section were obtained on samples collected at times when measurements of seepage losses and gains of the river were being made. At the times when such measurements were made the river was sampled at each measuring point and a partial analysis made of each sample. These are analyses 1 to 81. The seepage studies were made to determine the quantities of water contributed to the river by ground-water inflow, the amounts lost to ground water from the river, and the portions of the river that were gaining or losing from such seepage. In order to determine these losses and gains the stream-flow measurements were so timed that the same water was measured repeatedly as it passed the measurement stations on its way downstream. Samples taken at the times of these measurements gave indications of inflow of water different in chemical character from that already in the river. Besides giving some indication as to the chemical character of the inflowing water, the analyses of these samples showed appreciable changes in the chemical character of the river water for some sections of river in which no gain or even a loss in flow was shown by the discharge measurements, indicating inflow in a part of the section compensated for by outflow in another part of the section. The tabulated results of the seepage studies in the area show analyses of water samples and the corresponding discharges of the river for several sampling points. Seepage measurements were made at periods of comparatively low flow, and the samples collected at low flow do not represent the concentration of the river at times of high discharge. During periods when the discharge is high, discharge measurements are of little value for determining seepage gains and losses. It is likely that concentrations of dissolved matter in the river at high flow are much lower than at low flow. It seems likely also that the analyses for Gila River between Blue Creek and the bridge on United States Highway 666 given in this report represent fairly well the maximum concentrations that are likely to occur in an average year, but that minimum and average concentrations for any year cannot be predicted from them. Figure 3 shows analyses of some samples collected during seepage studies in the area in July 1940 and May 1941. The results are expressed graphically, 13 with the total dissolved solids represented by FIGURE 3.—Analyses of water from Gila River between the mouth of Blue Creek near Virden, N. Mex. and the highway bridge south of Clifton, Ariz. the total height of the block. The segments of the block represent the proportionate concentrations of the various components of the dissolved matter, expressed in equivalents per million. These two
sets of analyses show changes that occurred as the water of the river passed through the Duncan-Virden Valley at a time of low flow in the summer of 1940 and a time of somewhat higher than normal flow in the spring of 1941. The first samples of each set were taken at the gaging station on the river below the mouth of Blue Creek, which is about 5 miles above the head of the valley; the next samples were taken from the river at the Duncan highway bridge; and the last samples were taken at the gaging station at the bridge on United ¹³ Collins, W. D., Graphic representation of analyses: Ind. and Eng. Chemistry, vol. 15, p. 394, 1923. States Highway 666 south of Clifton, about 6 miles below the lower end of the valley. The graphs in figure 3 and the tabulated analyses show that the water that passes the gaging station below Blue Creek at low flow is of low mineral content, containing chiefly bicarbonate, calcium, and magnesium. As the water passes through the Duncan-Virden Valley it changes in composition. Some of the water is diverted into irrigation canals and applied to the land. Part of the irrigation water generally passes downward to the water table, leaching salts from the soil, and as the water table slopes toward the river in most parts of the valley this water eventually returns to the river as ground-water inflow. Ground water from other sources reaches the river in some parts of the valley, but in other parts the river consistently loses water by seepage through the river-bottom materials. During periods of low flow most or all of the water entering the valley may be diverted above Duncan, and river flow at Duncan at stages such as prevailed in July 1940 is mainly composed of groundwater inflows. The water at low flow is not highly mineralized but contains considerably higher concentrations of dissolved matter than water entering the valley at its head, most of the increase consisting of sodium and sulfate. Below Duncan there are some additional diversions for irrigation, and most of the time there is little groundwater inflow for a distance of 15 miles. Beginning about 10 miles below Duncan, at very low stages there may be no surface flow at. all in the river for a distance of 5 miles. About 15 miles below Duncan the river enters a narrow rocky canyon, and near this point. there is always some flow. The short canyon section ends at York, about 17 miles below Duncan, and the river continues to gain from ground-water inflow through the 13 miles from York to the gaging station at the bridge on United States Highway 666. # VARIATIONS IN FLOW BELOW DUNCAN The variations in flow of Gila River below Duncan present an interesting phenomenon. The formations that underlie the river bed in this area probably are not extremely permeable, and it is doubtful if large flows of water could be transmitted through them as underground flow and returned to surface flow with the same chemical character as before going underground. The analyses show that the water that appeared in the river at York at times when the river above York was dry contained less dissolved matter than and was different in chemical character from water that passed Duncan. Although the water at York was less concentrated than the water that passed Duncan, it contained a larger proportion of sodium and bicarbonate. It was also somewhat more concentrated than the water entering the valley at its head above Duncan. It seems probable that at low stages the water in the river at York represents the ground-water underflow of the entire Duncan-Virden Valley, probably augmented by some underflow from Apache Creek. This water is forced to the surface by the constriction in the width of the valley and a probable decrease of the depth of valley fill at the canyon mouth. The water is similar in chemical character to that found in wells near the head of the canyon. The water entering the river above York contains somewhat more sodium, chloride, and sulfate than river water entering the valley. The decreased calcium and magnesium content of the water at York may be due to a natural softening or base-exchange process that is going on in the saturated valley fill. A more detailed study in the vicinity of York should yield valuable information regarding the sources of the inflow received by the river. When the river above York was dry the analyses for the river at York and at the gaging station on the bridge on United States Highway 666 south of Clifton showed no significant difference in chemical character or concentration of the water. This indicates that in the 13-mile stretch below the point where the river again began to flow all of the inflow had about the same chemical character. In May 1941, when the river was at a high stage, slight increases in concentration occurred between the head of the valley and Duncan and between Duncan and the gaging station near Clifton. Insufficient data are available to determine whether increases occurred at other times. The tributaries of Gila River in the Duncan-Virden Valley all are ephemeral streams. Some have small perennial flows in their upper reaches, but they contribute water and dissolved matter to the river through surface flow only during storm periods. The length of some of the tributaries and their large mountainous drainage areas suggest the possibility that there may be important quantities of underflow in the alluvium underlying the stream channels, but not enough data have been obtained to make reliable estimates of the quantity of underflow in any one of them. In the 1940–41 investigations in this area it was estimated that the total underflow of the tributaries of the river between Blue Creek and the bridge on United States Highway 666 was 12 second-feet.¹⁴ # GROUND WATER Analyses 87 to 158 are of samples of ground water collected in the Gila Basin from the mouth of Blue Creek to the bridge on United States Highway 666. These analyses indicate that ground waters of ¹⁴ Turner, S. F. and others, op. cit., p. 137. the area differ considerably in chemical character and concentration. Water of low mineral content from wells near and above Virden, N. Mex., contained less than 500 parts per million of dissolved matter, which consisted mostly of calcium and bicarbonate. Waters from wells in the lower part of the area, from Sheldon, Ariz., downstream, are similar in concentration to those found near Virden but are generally softer than are waters near Virden. Some of the waters near York contain mostly sodium and bicarbonate. The river water at low flow in this lower part of the valley is similar in chemical character to ground waters in the same area. In the central part of the valley ground waters of high mineral content occur, and one sample collected from a well southeast of Duncan along the north side of the river and near the Arizona-New Mexico State line contained nearly 5,000 parts per million of dissolved solids (analysis 99). This was the highest concentration observed in any water sample from the area, but concentrations of more than 1,000 parts per million of dissolved solids are common in ground waters in an area of 7 or 8 square miles near the river east and southeast of Duncan. It is not possible to determine from the limited number of analyses available the exact boundaries of the areas where the more highly mineralized waters are found. However, such areas exist on both sides of the river, particularly on the south near the mouths of Rainville and Railroad Washes where lake-bed deposits are exposed. The waters from these areas contain considerable quantities of sodium, sulfate, and chloride. A spring issuing from a fault zone in lake-bed deposits flows into Rainville Wash and causes a small perennial flow at the bridge across the wash on United States Highway 70 about 1 mile east of Duncan. This water, which is probably typical of the more highly mineralized ground waters in the area, contained 1,790 parts per million of dissolved solids, which consisted largely of sodium and sulfate. The spring water seldom reaches Gila River as surface flow. The concentration of sodium, sulfate, and chloride in the spring water is believed to be typical of the more highly mineralized ground waters in the Duncan-Virden Valley. For comparison there are shown graphically in figure 4 analyses of water from the spring in Rainville Wash and of water from an irrigation well about 2½ miles northeast of Duncan. The sample from the well may be considered representative of ground waters near Sheldon, and it is similar in concentration to those found in the valley above Virden. The more highly mineralized waters in the area probably represent drainage from irrigated lands near the river and inflow from waterbearing strata in the lake-bed formations that underlie parts of the FIGURE 4.—Analyses of ground waters from the Gila River Basin above the mouth of Bonita Creek. valley. These lake beds contain considerable amounts of soluble matter, and water obtained from them should be rather highly mineralized. Another characteristic of ground waters as well as surface waters in the area is their relatively high fluoride content. Fluoride seems to be more abundant in water from the deeper wells that are drilled into lake-bed deposits, but it is present in significant amounts in shallower ground waters throughout the valley. It is only in the more dilute ground waters in the area that fluoride content is generally below 1 part per million. Several of the ground-water sources sampled contained unusually large amounts of nitrate. A maximum concentration of 199 parts per million was found in a sample of highly mineralized water from a shallow well near Duncan. The source of such a high concentration of nitrate is not known, but rather high concentrations are common in the shallow ground waters of the entire basin and have been found in other parts of Arizona as well. # GILA RIVER BASIN FROM THE BRIDGE ON UNITED STATES. HIGHWAY 666 TO
MOUTH OF BONITA CREEK # SURFACE WATER At the bridge on United States Highway 666 south of Clifton, Gila River is entrenched in a deep rock-walled canyon. The canyon is continuous for 16 miles downstream to the mouth of Bonita Creek near the head of Safford Valley. In this canyon section the river receives inflow from comparatively minor ground-water sources and from three major tributaries—San Francisco River, Eagle Creek, and Bonita Creek. A field investigation of part of this section of the Gila River Canyon was made during November 1940 for the purpose of sampling the river, its tributaries, and some of the spring inflows. Analyses 159 to 164 are for samples from Gila River in this area. The waters of Gila River change noticeably in chemical character between the bridge on United States Highway 666 and the mouth of Bonita Creek. This change takes the form of a large increase in the concentration of sodium and chloride, most of which is brought in by San Francisco River. ### GROUND WATER There are few wells in this area, but a number of springs occur along Gila River. The largest of these are the Gillard Hot Springs, located about 4 miles below the highway bridge and about 2 miles above the mouth of San Francisco River. They consist of a series of small seeps extending for about 150 feet along the north bank of the river. At high stages of the stream all the seeps are under water, and even at low stages much of the seepage zone is flooded so that it is difficult to estimate the volume of spring flow. From the analyses of water of the springs and of the river above and below them and the river discharge measured at the gaging station at the highway bridge about 4 miles upstream on the day the samples were taken, it is estimated that the flow from the seepage zone was about 400 gallons a The dissolved solids in the spring water, amounting to 1,260 parts per million, consisted mainly of sodium and chloride but contained 10 parts per million of fluoride. (See analyses 204 to 207.) An analysis of water from the Gillard Hot Springs, No. 207, is shown graphically in figure 4. The water issues from a fault zone, and its high temperature indicates that it probably rises from a considerable depth. In April 1942 the temperature of the water discharged was measured, and several seeps were found to have temperatures of 181° This temperature, so far as is known, is considerably higher than that of any other hot spring in the basin. On cool days a cloud of vapor, which is visible for some distance up and down the canyon, hangs over the seepage zone. The springs may be reached by a primitive road about 5 miles long branching off from United States Highway 666 south of Clifton, but it is not always passable for automobiles. Limited facilities for hot baths have been constructed at the springs but have deteriorated from long disuse because of the inaccessible location of the springs. A well has been dug to a depth of 26 feet in the alluvium of the canyon bottom and yields hot water similar to the spring water, but no pump has been installed on the well. In November 1940 several other springs were observed in the canyon of Gila River, and a few of them had temperatures somewhat above the normal ground-water temperatures for the area. Most of the springs in the Gila River Canyon were less concentrated than the Gillard Hot Springs and contained less than 1,000 parts per million of dissolved matter, which consisted mainly of sodium and chloride. Two small thermal springs were found in the bottoms of minor canyons draining into Gila River between the mouths of Eagle and Bonita Creeks. The waters were similar in concentration and character, containing less than 300 parts per million of dissolved matter, with bicarbonate as the principal anion, a somewhat larger amount of magnesium than calcium, and a very small amount of sodium. Analyses for some of the springs are given. (See Nos. 203 and 209–212.) # SAN FRANCISCO RIVER BASIN # SURFACE WATER # MAIN STREAM San Francisco River enters Gila River from the north about 6 miles below the gaging station on Gila River near Clifton. The San Francisco is the largest tributary of the Gila in the part of the basin covered by this report. At Clifton, 8½ miles above the mouth of the San Francisco, the drainage area is 2,790 square miles. This area is similar in topography to that drained by Gila River in New Mexico, which is characterized by rugged mountains and plateaus, and much of which is at an altitude high enough to support a growth of pine timber. Annual discharges of San Francisco River for the periods 1914–15, 1917, 1928–33, and 1936–45 measured at Clifton have ranged from a maximum of 678,700 acre-feet in 1915 to a minimum of 50,860 acre-feet in 1944. Analyses 165-172 show the quality of water in San Francisco River above Clifton at low stages of the river and probably represent the maximum concentrations of dissolved matter that are likely to occur in the stream above Clifton. The water contains rather small amounts of dissolved matter, made up mostly of calcium and magnesium bicarbonate. For a period of 17 months in 1943 and 1944 samples were collected daily from San Francisco River at the site of the old Phelps Dodge Corp. smelter, 1½ miles below the gaging station on the river in Clifton. There is little inflow between the gaging station and the sampling point, so that discharges measured at the gaging station should represent the discharges at the sampling point. Samples were not collected at the gage because inflow of highly mineralized waters occurs just above it, and often the water in the river at the gaging station is not of uniform concentration all the way across the stream. Analyses 173-191 show some of the results of the daily sampling of the river below Clifton. The weighted average analysis for the year ended September 30, 1944, is shown graphically in figure 5. The water usually contained a moderate amount of dissolved mineral matter, consisting mainly of sodium and chloride. The river water may be rather highly mineralized at times of low flow. The dissolved matter carried past the sampling station during the year ended September 30, 1944, amounted to 37,500 tons. ### BLUE RIVER Blue River, the largest tributary of San Francisco River, was sampled once at low flow, at which time the water contained 344 parts per million of dissolved matter, mainly calcium and magnesium bicarbonates. (See analysis 193.) #### CHASE CREEK Chase Creek, which joins San Francisco River at Clifton, is an intermittent stream. It discharges no water to the San Francisco as surface flow except during wet weather, but a perennial flow is maintained in parts of its course just above Clifton by springs in its bed, FIGURE 5.—Weighted average analyses of water at four gaging stations in the Gila River Basin for the year ended September 30, 1944. drainage from abandoned mines, and waste from leaching pits operated in Chase Creek Canyon by the Phelps Dodge Corp. to remove copper from the mine drainage waters. Analyses 194 and 195 are of samples of water from Chase Creek. In the upper reaches of the stream springs occur where the underflow of the creek is forced to the surface by rock ledges in the canyon bottom. The water from these springs is moderately low in mineral content. A sample collected from one contained 596 parts per million of dissolved solids, which consisted chiefly of calcium and sulfate. Analyses of the mine drainage waters entering the creek indicate that these waters frequently contain appreciable quantities of copper salts, both in solution and in suspension, but that the concentrations of dissolved solids usually amount to less than 1,000 parts per million. By treatment in the leaching pits the copper is precipitated, and the waste water issuing from the pits contains iron salts and generally some free sulfuric acid. In flowing over the rocky stream bed some of the acid is neutralized and the iron oxidized and precipitated. Water flowing in the creek about 2½ miles upstream from Clifton was sampled in 1944. The water was brown in color, owing to its iron content, and contained the equivalent of 256 parts per million of free sulfuric acid, with a total of 1,730 parts per million of sulfate. (See analysis 194.) The flow was small, and it disappeared into the alluvium of the creek bed about a mile above Clifton. The other streams in the San Francisco River Basin were not sampled during the investigation. ### GROUND WATER Analyses of 33 ground water samples collected in the San Francisco Basin are tabulated in this report. About the only important developments of ground water in the basin are those at Clifton. ## PHELPS DODGE CORPORATION WELL The Phelps Dodge Corp. has drilled a well on the right bank of the river just above the mouth of Chase Creek to obtain water for use in the Morenci ore-treatment plant. The well was sampled at weekly intervals for a period of about 7 months, beginning in July 1943. Water from this well varied widely in concentration, as shown by analyses 222–240. Its conductance ranged from 309 to 1,100 during the period, but it was always high in sodium and chloride and generally very high in hardness. Water of this type would not be considered satisfactory for many industrial uses, but large quantities were pumped and used in the Morenci plant in 1943 and 1944 in processes where water of good quality was not required. The lower concentrations of the well water occurred at times when flow in San Francisco River was normal or above normal, and the higher concentrations were observed after the river had been at a rather low stage for several months. Sampling of the well water was not continued long enough to indicate how closely the quality of water obtained from the well was related to the volume of flow in San Francisco River. #### CLIFTON HOT SPRINGS The well of the Clifton Mineral Hot Springs Co. is located about a quarter of a mile below the mouth of Chase
Creek, on the left bank of San Francisco River. This well furnishes highly mineralized water at a temperature of about 130° F. for mineral baths and the municipal swimming pool. The water is obtained from the river alluvium at a shallow depth. It was sampled several times from 1941 to 1944, and the analyses are tabulated on pages 82–83. The water was variable in concentration but always was highly mineralized. It contained large amounts of sodium, calcium, and chloride but only small quantities of other ions. An analysis of water from the well is shown graphically in figure 4. Some seepage springs along the river, which were sampled several times, discharge water of the same chemical character as the well water. An analysis of water from the Clifton Hot Springs was published in 1905. 15 Analyses for samples collected from the springs and the well from 1940 to 1944 are numbered 213-221 in the tables of analyses. The high temperature and high mineralization of the water from the Clifton Hot Springs indicate that the water comes from a deep-seated source. It probably rises along a fault zone and enters the alluvium in the bottom of the San Francisco Canyon, from whence it seeps into the river or is removed by pumping. #### RELATIONSHIP OF CLIFTON HOT SPRINGS TO QUALITY OF WATER IN SAN FRANCISCO RIVER The change in the chemical character of the water of San Francisco River as it passes through Clifton has been noted by early investigators.¹⁶ The change is believed to be caused by inflow from the Clifton Hot Springs. Between 1940 and 1944 a series of observations was made to determine the amount of the change in concentration of The visible inflow from the Clifton Hot Springs is the river water. usually small. When first visited in 1940 a number of small seeps were visible in the river bottom near the Southern Pacific depot in Clifton, but on two visits to the springs in 1944 there was no visible inflow in the section. A rather large volume of water is probably discharged into the river from spring openings under the water surface, however, but the only evidence of this inflow is the increase in concentration of the river waters in the area. The gaging station on the river just below the seepage zone provides a measure of the combined river and spring flow, and from gaging station records and analyses of samples taken at about the same time from the river above Clifton and below the spring zone and from the springs it is possible to compute the flow of the springs and the load of dissolved solids they contribute to the river. The results of the computations are tabulated below. | | Computed spring
discharge
(second-feet) | Computed salt load
of springs
(tons per day) | | |---------------|---|--|--| | Oct. 30, 1940 | | 65 | | | Aug. 11, 1941 | 2 . 9 | 70 | | | June 15, 1943 | 2. 9 | 69 | | | Jan. 10, 1944 | 2. 1 | 65 | | | Aug. 1, 1944 | 9 | 24 | | | Nov. 1, 1944 | 1. 2 | 32 | | ¹⁵ Lindgren, Waldemar, U. S. Geol. Survey Geol. Atlas, Clifton folio (no. 129), p. 13, 1905. ¹⁶ Lindgren, Waldemar, the copper deposits of the Clifton Morenci district, Ariz.: U. S. Geol. Survey Prof. Paper 43, p. 51, 1905. On August 11, 1941, the river flow was measured twice with a current meter at both the upper and lower sampling points. The averages of these two measurements at each sampling point indicated an increase of river flow in the spring zone amounting to 2.5 second-feet, which checks closely with the computed spring flow of 2.9 second-feet. The tonnage of dissolved matter contributed by the springs was an appreciable part of the daily mean load of 103 tons carried by the river past the sampling station below Clifton during the year ended September 30, 1944. The sodium chloride in the spring water had a significant effect on the chemical character of the waters of both San Francisco River and Gila River below the San Francisco. #### APPARENT DECREASE IN SPRING FLOW IN 1944 From data collected in the Clifton area in 1944 it appears that the discharge of the Clifton Hot Springs into the river was less in that year than at previous times for which data were obtained. charge of highly mineralized water from the fault zone into the river alluvium probably is fairly constant, but some of the water may have been removed from the alluvium before it could seep out into the The analyses of samples from the Phelps Dodge well at Clifton indicate that it yields highly mineralized water similar in chemical character to water obtained from the spring zone a short distance down the river. It seems probable that at least some of the water obtained from this well comes from the same source as that supplying the springs. The continuous heavy pumping of the well in 1944 may have lowered the hydrostatic head of highly mineralized water in the spring zone enough to reduce the outflow into the river. With lower rates of pumping at the well it is likely that the spring flow would again reach the amounts computed in 1940, 1941, and 1943. The apparent decrease in spring flow caused by pumping suggests the possibility of preventing at least a part of the water of the Clifton Hot Springs from entering the river. A much more detailed investigation of the Clifton vicinity would be needed to determine whether a program of disposing of the highly mineralized water by pumping or other means would be feasible or economically justifiable. If the water of the Clifton Hot Springs could be completely prevented from reaching the river, Gila River water available to the Safford Valley water users would be considerably improved in quality and only slightly reduced in quantity. ## OTHER SPRINGS Other hot springs are reported to exist above Clifton in the San Francisco River Basin, 17 but they were not visited by the writer. ¹⁷ Stearns, N. D., Stearns, H. T., and Waring, G. A., op. cit., pp. 168-169. Because of the low mineral content of Blue River and of San Francisco River above Clifton, even at low flow, it seems unlikely that any springs along the upper reaches of these streams contribute appreciable quantities of dissolved matter to the river. #### EAGLE CREEK BASIN ## SURFACE WATER EAGLE CREEK Eagle Creek, a perennial stream, joins Gila River about 2 miles below the mouth of San Francisco River. It drains a mountainous area west of and similar in topography to the San Francisco drainage basin. Samples were collected from the creek daily for about 9 months beginning in July 1943. They were taken about 10 miles west of Morenci at the Phelps Dodge Corp. pumping plant, which furnishes water for the operations at Morenci. The water of Eagle Creek at low stages seldom contains much more than 300 parts per million of dissolved mineral matter, and during flood stages it is even less concentrated. Most of the dissolved matter consists of calcium, magnesium, and bicarbonate. No gaging station was maintained on Eagle Creek by the Geological Survey during the investigation; hence no weighted average analyses or loads of dissolved solids could be computed for the stream. A sample taken at the mouth of Eagle Creek at low flow indicates that there is no appreciable change in chemical character or concentration of its water between the Phelps Dodge pumping station and the mouth of the creek. Eagle Creek, therefore, contributes water of low mineral content to Gila River. No analyses are available for other streams in the basin of Eagle Creek. # GROUND WATER A series of small hot springs is reported to exist in the canyon of Eagle Creek near the Phelps Dodge Corp. pumping plant, 18 but no analyses for them are available. Near the site of the diversion from Eagle Creek a well has been drilled in the alluvium of the canyon of Eagle Creek to obtain water for the public supply of Morenci. The well was sampled at weekly intervals for 7 months, beginning in July 1943 (analyses 246–263). Water from this well was fairly constant in composition and similar in chemical character to the surface flow in the creek, except that the well water contained slightly more sodium and fluoride. The well water contained about 350 parts per million of dissolved solids, consisting chiefly of sodium, calcium, and bicarbonate. A typical analysis of the water from the well, together with analyses of other ground waters of the Gila River Basin, is shown graphically in figure 4. Since the well water is reported to have a ¹⁸ Stearns, N. D., Stearns, H. T., and Waring, G. A., op. cit., p. 116. temperature as high as 90° F. at times, some of the water may come from the source that supplies the hot springs reported in the area. No other samples of ground waters were obtained in the basin of Eagle Creek. ## BONITA CREEK BASIN ## SURFACE WATER BONITA CREEK Bonita Creek enters Gila River about 5 miles below the mouth of Eagle Creek and about 2 miles above the head of the Safford Valley. It is a perennial stream in its lower reaches and drains an area southeast of the Eagle Creek Basin, which has a similar topography. No gaging station existed on Bonita Creek during the investigation, and, because of the inaccessibility of the creek, only one sample was obtained directly from it. However, about 5 miles above the mouth there is an infiltration gallery, which collects water for a pipe line extending down the creek and the Gila River Valley to Safford, where the water is used as the public supply. A number of samples collected from the tap and analyzed in the Geological Survey Laboratory in Safford give an indication of the quality of the combined surface flow and underflow of the creek. These analyses show that the water in Bonita Creek is similar in character to that of Eagle Creek and that it generally contains about 300 parts per million of dissolved matter consisting chiefly of calcium and magnesium bicarbonates. A sample taken at flood stage contained 139 parts per million of dissolved
solids. # GROUND WATER No analyses are available for ground waters in the Bonita Creek Basin except those for the combined ground and surface water represented by the Safford public supply. Various springs are reported to exist in the area, but none were visited. ### SAN SIMON BASIN ## SURFACE WATER SAN SIMON CREEK The drainage area of San Simon Creek above the gaging station on the creek near Solomonsville, 2½ miles above its mouth, is 2,280 square miles. In area this valley comprises a major part of the basin of Gila River above Coolidge Dam. However, in most of the San Simon Basin there is little rainfall, and for this reason the annual runoff of San Simon Creek is normally very much smaller than that of San Francisco River, which drains an area only slightly larger but with heavier precipitation. There is usually flow in San Simon Creek only during storm periods. Annual discharges at the gage near Solomonsville from 1935 to 1943 ranged from 2,600 to 16,000 acre-feet. Irrigation waste water often enters the creek in small quantities below the gaging station. No samples of flood flows were taken directly from San Simon Creek, but a few analyses for Gila River at Safford are available for times when the flow in the river at Safford was practically all coming from floods in San Simon Creek. (See analyses 264–269.) These analyses indicate that flood waters from San Simon Creek contain 500 to 900 parts per million of dissolved matter, which is a fairly high concentration for flood water compared with flood runoff in other areas of the Gila River Basin. The dissolved matter consists mainly of sodium, chloride, bicarbonate, and sulfate, but the chemical character of water from flood flows originating in different parts of the San Simon Basin may vary considerably. The high percentage of sodium in the water from San Simon Creek makes it less desirable for irrigation than flood waters from most other tributaries that have been sampled. Another characteristic of surface flow from San Simon Creek is its high sediment content; at times when flood flows originated in San Simon Creek the water in Gila River at Safford often contained more than 10 percent of sediment by weight. The sediment is very finely divided, yellowish brown in color, and settles very slowly. It is generally believed by farmers in the Safford Valley that the water from San Simon Creek is inferior in quality for irrigation purposes and that the suspended matter it contains is damaging to their land and crops. #### GROUND WATER Ground water has been developed for irrigation in several parts of the San Simon Basin. These areas are near Rodeo, N. Mex., at the head of the creek; near San Simon, Ariz., in the upper part of the basin; and locally along the eastern and western sides of the lower end of the basin where it merges with the Safford Valley. The lowermost developments and those near the town of San Simon use water from flowing wells, which have been successfully drilled in these areas. ## RODEO AREA A few analyses of ground water in the area near Rodeo were published in 1919.¹⁹ These analyses indicate that the ground water is low in dissolved mineral matter, which consists largely of sodium and bicarbonate. # SAN SIMON ARTESIAN BASIN In the artesian area near the town of San Simon 55 samples were obtained in 1940 and 1941 from flowing wells and 3 samples from shallow nonartesian wells. Analyses of these samples, Nos. 270–333, show that none of the artesian waters sampled in the vicinity of the ¹⁹ Schwennessen, A. T., Ground water in San Simon Valley, Ariz. and N. Mex.: U. S. Geol. Survey Water-Supply Paper 425-A, p. 21. 1919. town of San Simon had high concentrations of dissolved matter. Two distinct types of water were obtained from the artesian wells in this area. East of San Simon Creek and in the southeastern part of the artesian basin the water obtained from the deep wells contained mostly calcium and bicarbonate. In the western part of the area of flowing wells the waters contained more sodium than calcium and magnesium. Bicarbonate was the usual predominating anion, but some waters contained moderate amounts of sulfate. An analysis of a water of each type is shown graphically in figure 6. The two types of water obtained from artesian wells near San Simon may have resulted from different origins of the valley-fill deposits in the area. Most of the fill east of San Simon Creek presumably was derived from the Peloncillo Mountains east of the basin. These mountains have large areas of volcanic rocks containing calcium and magnesium. The fill in the western part of the area probably originated in the granitic rocks of the Dos Cabezas range to the west. Almost all the ground water in the San Simon artesian area contains relatively large amounts of fluoride. Some of the sodium-bicarbonate type of artesian waters in the western part of the area were found to be exceptionally high in fluoride, one sample having a concentration of 38 parts per million. This sample was obtained from an abandoned artesian well that yielded a small flow of warm water containing less than 500 parts per million of total dissolved matter. This is an unusual water, as its fluoride concentration is higher than has been found in any other part of the Gila River Basin. The shallow ground waters in the vicinity of the town of San Simon were not intensively studied, but it appears from the three available analyses that the shallow waters may contain considerably more dissolved matter than the artesian waters. The sodium, sulfate, and chloride concentrations of these waters are rather high, and the fluoride content is high enough to make the water objectionable for domestic use. It is likely that there is considerable variation in the composition of shallow waters in the vicinity of San Simon. ### LOWER SAN SIMON AREA In the lower part of the San Simon drainage basin there are areas where it is reported difficult to find ground water of satisfactory quality for livestock, but during this investigation no waters of excessive concentrations were found. Samples from some nonflowing artesian wells in the lower part of the valley contained about 1,000 parts per million of dissolved matter. These waters were soft, containing little calcium or magnesium but considerable amounts of sodium, chloride, and sulfate and, in some instances, considerable amounts of bicarbonate. At the extreme lower end of the drainage area of San Simon Creek some of the shallow ground waters sampled were rather con- FIGURE 6.—Analyses of ground waters from the Gila River Basin below the mouth of Bonita Creek. centrated, one sample containing more than 6,000 parts per million of dissolved matter. In the southeastern part of the lower San Simon drainage basin several nonflowing artesian wells have been drilled. One well has a large flow of warm water, which has been used in recent years for small-scale irrigation. The water contains more than 90 percent of sodium with a total solids content of about 1,000 parts per million. # GILA RIVER BASIN FROM MOUTH OF BONITA CREEK TO CALVA SURFACE WATER Analyses 344 to 450 provide a summary of the chemical character of Gila River waters between the mouth of Bonita Creek and the Southern Pacific Railroad bridge at Calva, as shown by analyses of samples collected during the period from 1940 to 1944. Additional analyses for some of the sampling points in the area for the period have been published in the annual reports on quality of surface waters of the United States—Water-Supply Papers 942, 950, 970, 1022, and 1030. # GILA RIVER FROM SOLOMONSVILLE GAGING STATION TO CALVA Samples taken at the gaging station just below the mouth of Bonita Creek and at the gaging station near Solomonsville, 3 miles downstream, indicate the chemical character of Gila River water at the upper end of the area. Below the gaging station near Solomonsville large amounts of water are diverted from the river for irrigation, and the river receives considerable inflow from ground water and from irrigation return flow, so that a large increase occurs in the concentration of dissolved matter in the river water. Samples taken at or near the gage at Calva indicate the chemical character of water leaving the area. The samples taken at Bylas resemble closely in chemical character the water passing Calva, 10 miles downstream, and the discharges measured at Calva were used with the Bylas analyses to compute a weighted average. There is rarely any increase in flow of the river between Bylas and Calva. Samples taken from the river at points between Bonita Creek and Calva indicate the extent of and the locations where the changes in chemical character occur. The best over-all indication of the changes that occur in the chemical character of river waters in this part of the basin is found in the weighted average analyses for the samples collected daily at the gaging stations near Solomonsville, at Safford, and at Bylas for the year ended September 30, 1944. These analyses are shown graphically in figure 5 and are Nos. 357, 390, and 445 in the tables. An indication of the chemical character of the water leaving the Duncan-Virden Valley can be obtained from figure 3, although no weighted average analyses are available. The chloride concentration of this water, which is comparatively low, is greatly increased by the inflow of water from San Francisco River. The resultant Gila River water that enters the Safford Valley at the gaging station near Solomonsville contains a rather large percentage of chloride, although it is somewhat lower-than the percentage of chloride in San Francisco River water. In general the mineral matter contributed to Gila River in its passage through Safford Valley consists largely of sodium, chloride, and sulfate. This is well illustrated by the gain in sodium and chloride between Solomonsville and Bylas. During the year ended September 30, 1944, the river water passing the gaging station near
Solomonsville contained, on the average, 454 parts per million of dissolved solids, consisting mainly of sodium, calcium, chloride, and bicarbonate. The water passing Solomonsville was diverted to a large extent for irrigation in the upper part of the Safford Valley, so that only about half as much water passed Safford in the river as entered the valley at Solomonsville. Three irrigation canals bypass the Safford gaging station and carry a large volume of water. Part. of the water passing Safford in the river was contributed by inflow of dilute flood waters below the Solomonsville gage. There are several tributaries in this section, of which San Simon Creek is the largest, but none of them have perennial flows. The river water passing-Safford during the 1944 water year was about 10 percent less concentrated than the water passing the Solomonsville gaging station duringthat period, but the water at Safford was slightly different in character, containing a larger proportion of sodium, somewhat more bicarbonate and sulfate, and less chloride. Most of the observed change in chemical character of the river water takes place between Safford and Calva. Below Safford, although additional diversions are made for irrigation, the river receives more inflow from ground-water and surface-water sources than is diverted. As a result, the total flow of the river leaving the valley at Calva during the year ended September 30, 1944, was about 9 percent more than the flow that passed Safford during the year. However, because of the large diversions above Safford, the flow at Calva was 40 percent less than the flow that entered the valley at the gaging station near Solomonsville. The concentration of dissolved solids in the water leaving the valley was more than double that of the water enteringthe valley in Gila River. Computed from the analyses and the discharge records, the total load of dissolved solids passing the Solomonsville station during the year was 84,100 tons, the amount passing Safford in the river was 42,200 tons, and the amount leaving the valley at Calva was 105,000 tons, a net increase in load through the valley of 20,900 tons. The significance of the increase cannot be definitelystated on the basis of the records for this one year. The runoff for the 1944 water year for Gila River was lower than normal, and it is likely that the increase in load of dissolved matter might be different in other years. Weighted average analyses for Safford are available for the water years 1941 to 1944. (See analyses 381, 384, 387, and 390.) It should be noted that the concentration of the water passing the Safford station is lower for years of high discharge. No data are available for the other two stations, except for 1944. The changes in chemical character of the river water as it passes through Safford Valley are shown by the analyses of samples collected at several additional sampling points. Maximum and minimum concentrations observed during 12 months or shorter periods are shown for stations at which samples were collected at irregular intervals. Most of these stations were located in the lower part of the valley between Thatcher and Calva and were operated during part of 1943 and 1944, but one station above and two below Safford were operated intermittently for a time during 1940 and 1941. It was not possible to make weighted average analyses for these stations because of incomplete discharge data and infrequent sampling. However, the highest concentrations of dissolved matter were found in the river water passing the gaging station at Fort Thomas at times of low flow. There was an increase in concentration as the water passed from Safford to Fort Thomas, and a maximum concentration of more than 6,000 parts per million was observed at Fort Thomas in the summer of 1944. Below Fort Thomas the maximums observed were lower because the ground water inflows occurring below Fort Thomas were of less concentrated water than those farther upstream. ### SEEPAGE STUDIES At times when studies were being made of seepage gains and losses of Gila River between Bonita Creek and Calva, water samples were collected at each river measuring point. Analyses of these samples indicate the changes in the chemical character of the waters of the Gila River that occur at low flow in this part of the basin. Two typical sets of analyses, those for the October 1940 and June 1944 observations, have been reproduced in graphic form in figure 7. Tabulated analyses 451 to 812 include results for all samples collected in the seepage studies. When the first seepage measurements were made in 1940 the uppermost gaging station on the river in Safford Valley was that below Bonita Creek. This gage was abandoned in 1941 and replaced by a station 3.8 miles downstream, referred to as "Gila River near Solomonsville, Ariz." The lower gaging station was used as the initial point for reporting mileage between stations in the seepage measure- FIGURE 7.—Analyses of water from Gila River between the mouth of Bonita Creek near Solomonsville, Ariz., and Bylas, Ariz. ments made after 1941. The meandering of the river channel caused changes in the river distances between some of the stations between 1941 and 1943; consequently, different mileage figures are shown for certain reaches after 1941. Discharge values reported in the tables are those actually measured. Discharge values for seepage measurements made in 1943 and 1944 were adjusted for use in certain computations discussed in another report,²⁰ and the adjusted values are given in that report. One of the first sets of seepage measurements was made during the period October 16-25, 1940. On October 16 the river just below the mouth of Bonita Creek had a discharge of 154 second-feet and a concentration of 498 parts per million of dissolved solids, about half of which was sodium and chloride. The river gained somewhat in flow in the 9 miles from this point to the San Jose Canal wasteway, but the water showed no significant changes in chemical character or concentration. Any inflow in this reach must have been of about the same character as the water already in the river. From the San Jose Canal wasteway to the mouth of San Simon Creek there was an increase of 20 parts per million in dissolved solids, which was probably caused by ground-water inflow in this reach of the river. Little change in the concentration was noted from San Simon Creek to Safford. Safford to the Smithville Canal heading a 12-percent increase in dissolved matter was observed, which was composed largely of sodium and chloride. Below Safford, inflows due to return drainage from irrigated lands began to appear, most of which contained considerable amounts of sodium and chloride. At Pima, 28 miles below the gaging station at the head of the valley, the chemical character of the water in the river was strongly affected by ground-water inflows. The concentration of dissolved solids increased 50 percent over the concentration observed below the mouth of Bonita Creek. However, most of the water originally in the river at the head of the valley had been diverted, so that the flow at Pima was only about a third that at the head of the valley. Most of the inflow of ground water reaching the river above Pima represented irrigation return flow. Between Pima and Fort Thomas, a distance of about 16 miles, a further increase of about 90 percent in the concentration of dissolved solids occurred. Most of the increase was in sodium, chloride, and sulfate, although increases in concentrations of all ions except bicarbonate were observed. The maximum concentration for this series of samples, 2,000 parts per million, was found in a sample collected at the Geronimo crossing 6 miles below Fort Thomas. The concentration of inflowing water in this area was lower than that of the river ²⁰ Gatewood, J. S., Robinson, T. W., Colby, B. R., Hem, J. D., and Halpenny, L. C., Use of water by bottom-land vegetation in lower Safford Valley, Ariz.: U. S. Geol. Survey Water-Supply Paper 1103, pp. 96-101, 1950. water at the Geronimo crossing, so that by the time the river water reached Bylas, 6½ miles farther downstream, it had a lower concentration than at Geronimo. In the lower 4 or 5 miles of this reach the river flow decreased and was less at Bylas than at the Geronimo crossing. However, as there is a definite decrease in the concentration of the water in the reach, there must have been some inflow, probably in the upper part of the reach, which was smaller in amount than the outflow farther downstream. No further changes in the chemical character of the water occurred from Bylas to Calva. For the entire distance of 67 miles of river, from Bonita Creek to Calva, there was a net gain during this series of measurements of 51.6 second-feet and an increase of more than 350 percent in concentration of dissolved solids. The measurements begun on February 14, 1944, represent a different condition, one in which the ground-water levels in the valley were high and inflow was at a maximum. The measurements, however, covered only the lower part of the valley, from Thatcher to Calva. The river above Thatcher had received some ground water inflow, but the amount was small compared with quantities reaching it farther downstream. Between Thatcher and Pima the water increased in concentration of dissolved solids from 717 to 863 parts per million. The increase was mainly in sodium, chloride, and bicarbonate and occurred even though a considerable quantity of dilute surface water entered the river in the reach. The net gain from ground-water inflow for the reach was computed to be 22.8 second-feet. From Pima to the Eden crossing, a distance of about 7 miles, there was a further gain in flow of 18.7 second-feet, owing to ground water inflow, and an increase of about 85 percent in the concentration of dissolved solids. The increases were in sodium, sulfate, and chloride. Between the Eden crossing and the
gaging station at Fort Thomas there was a ground water inflow of 11.8 second-feet, and the concentration of dissolved matter increased to 2,200 parts per million at Fort Thomas, which was nearly 40 percent more than that at Eden crossing. The increase was chiefly in sodium and chloride. At that point the study was stopped and was resumed on February 18. During the intervening 2 days the river at Fort Thomas had decreased in flow by about half, and the concentration of dissolved solids in the water on February 18 was 3,370 parts per million. The maximum concentration of dissolved solids for the February 1944 measurements, 3,500 parts per million, was found in a sample collected at the gaging station near Geronimo, 3.9 miles below Fort Thomas. The river continued to gain in flow from Fort Thomas to the Calva gaging station, but the concentration of total dissolved solids de- creased progressively, reaching 2,580 parts per million at Calva, which indicated that the inflow was less concentrated than the river water. In the February 1944 set of measurements the discharge of the river increased by 84.5 second-feet, owing to ground-water inflows between Thatcher and Calva. The dissolved solids concentration increased by more than 300 percent in the reach. During the period June 19-23, 1944, the river was at a very low stage, and as a result of dry weather and heavy pumping ground-water levels were low, so that inflow to the river was small. The seepage measurements were begun at the gaging station near Solomonsville The river at that point had a flow of 49.2 second-feet, and the water contained 660 parts per million of dissolved solids. change in concentration occurred as the water moved downstream to the San Jose Canal heading, where the entire flow of the river was diverted into the canal. Below the diversion the river was dry for Seepage of ground water into the river above the mouth of San Simon Creek caused a small flow, which contained 806 parts per million of dissolved solids, a 25 percent increase in concentration over water in the river at the head of the valley. The seepage contained more sodium, magnesium, and sulfate than the original water. This surface flow ceased before it reached Safford, where the river was dry. At Thatcher a flow amounting to 0.9 second-foot, which contained 1,490 parts per million of dissolved solids, mostly sodium and chloride, resulted from ground water inflows. This surface flow ceased below Thatcher. Between Thatcher and Pima, however, ground-water inflows entered the river, causing a flow of 3 second-feet in the river channel at Pima. This water had a concentration of 1,760 parts per million of dissolved matter. Most of this water was diverted between Pima and the Eden crossing, so that at the crossing the river had a flow of only 0.1 second-foot. The river water at the Eden crossing contained 2,240 parts per million of dissolved matter, most of which was sodium and chloride. Between the Eden crossing and Fort Thomas some highly mineralized ground water entered the river, and at Fort Thomas the river flow was 1.1 second-feet and the water contained 6,020 parts per million of dissolved solids, or more than twice as much as at Eden crossing. Below Fort Thomas there was inflow of ground water with a lower mineral content, and at the Geronimo crossing, 6.4 miles below Fort Thomas, the river had a flow of 7.2 second-feet and a concentration of 2,580 parts per million. Below the Geronimo crossing there was no further inflow large enough to affect the concentration of the water appreciably, and the river water at Bylas was of about the same concentration as that at the Geronimo crossing. Flow decreased below Bylas, and at the Calva gaging station there was no flow at all in the river. The low-flow measurements and analyses indicate that there is always ground-water inflow to Gila River in parts of the Safford Valley. The inflow generally consists of water containing relatively large amounts of dissolved mineral matter, and as a result the river gains considerable amounts of sodium and chloride in its passage through the valley. The principal zones of inflow to the river are in the vicinity of Pima in a reach of about 7 miles and between Fort Thomas and the Geronimo crossing in a reach of about 6½ miles. Significant gains of water and changes in dissolved mineral matter occurred in both these areas even at lowest river discharge. #### TRIBUTARY WASHES No perennial streams enter Gila River in the Safford Valley. However, there are a number of tributaries in the valley that carry water during storm periods, and some of these are perennial streams in their upper reaches at high altitudes. This report contains some analyses of the samples that have been collected from these washes, some from their upper reaches when the streams were carrying water from melting snow and others from flood waters originating from heavy local rains. The samples of water from the upper reaches of the streams during the spring runoff period give an indication of the quality of the water that recharges the aquifers in the older fill cropping out near the mountains. No appreciable amount of this water reached the river as surface flow even in 1941, a year of unusually large runoff, because of the large losses from the streams in the recharge areas. The content of dissolved matter was very low for all samples from the upper reaches of these tributaries. The samples taken during flood flows in the lower reaches of the washes indicate that at times some of the washes in the area may discharge water to the river containing appreciable amounts of dissolved salts and suspended sediment. This is particularly true of San Simon Creek and Matthews Wash. The latter drains an extensive area of badlands in the Tertiary and Pleistocene valley-fill deposits where soluble matter probably is relatively abundant. Considerable amounts of irrigation waste water and surface drainage from irrigated land at times enter the river from both natural and artificial channels. The quality of the river water at low stages may for short periods be considerably influenced by these inflows, but the inflows are extremely variable, and individual ones often last only a few hours. ### GROUND WATER The study of the quality of ground water in the Safford Valley was more detailed than in the rest of the Gila River Basin, and a large proportion of the analyses in this report therefore is of samples collected in this area. A large number of wells and springs in the Safford Valley are owned by residents and used for various purposes. In addition, more than 1,300 shallow observation wells were driven during the investigation for observation of water-table fluctuations and for the collection of water samples. Between 1940 and 1944 most of the wells and springs in the valley were sampled at least once, and many were sampled two or more times. There are two water-bearing formations of major importance in the valley. Most of the wells obtain water from the widespread sand and gravel layers in the Recent alluvial fill of the inner cultivated valley. This material has been deposited by the river and its tributaries to a maximum depth in most places of less than 100 feet in a trough a quarter of a mile to nearly 3 miles wide carved in the underlying Tertiary and Pleistocene valley fill. Practically all the wells in the Safford Valley have depths of 100 feet or less and obtain water from this Recent alluvium. Wells with depths much over 100 feet and all flowing wells obtain water from the aquifers in the underlying Tertiary and Pleistocene valley fill. # WATER FROM RECENT ALLUVIUM In most places water from the Recent alluvium differs in chemical character from water from the lake-bed or other Tertiary and Pleistocene fill deposits. The shallow ground waters from various parts of the valley, however, differ greatly in chemical character and concentration, and in a few instances water from a single well has been known to change 50 percent or more in concentration over a period of a few months. A map showing dissolved mineral content of ground water in Recent alluvium from Thatcher to the east line of the San Carlos Indian Reservation is included in another report.²¹ This map shows conditions existing in 1944. Bonita Creek to San Jose Dam.—In the upper part of the valley above the San Jose diversion dam, northeast of Solomonsville, the waters of the Recent alluvium contain 500 to 1,000 parts per million of dissolved solids. The water is similar in composition to the water of the river at low flow in this part of the valley. Generally the main constituents are sodium, calcium, chloride, and bicarbonate, but the more highly mineralized waters contain relatively larger amounts of sodium and chloride. Large quantities of sodium and chloride are ²¹ Gatewood, J. S., Robinson, T. W., Colby, B. R., Hem, J. D., and Halpenny, L. C., op. cit., pl. 5. found in most of the more concentrated ground waters of Safford Valley. San Jose Dam to Safford.—Between the San Jose diversion dam and Safford the ground waters are somewhat more highly mineralized than those near the head of the valley, containing increased amounts of sodium and chloride, but in most places in this part of the valley total mineral content of ground water seldom exceeds 1,500 parts per million. However, there is a zone of highly mineralized water about a mile wide and 4 miles long extending northwestward along the Southern Pacific right-of-way from a point about 2½ miles above the mouth of San Simon Creek nearly to Safford. Near San Simon Creek the mineral content of ground waters in this zone is more than 5,000 parts per million, but it decreases to the northwest where, near Safford, dissolved solids are only about 2,000 parts per million. Safford to Pima.—From Safford to Pima, along the south side of the river, concentrations of dissolved mineral matter in the ground water generally range from 1,000 to 2,000
parts per million. On the north side of the river in this part of the valley concentrations are somewhat higher than on the south, particularly near the mesa, and in places reach 3,000 parts per million. Water in this part of the valley contains increased amounts of sodium, chloride, and sulfate. The bicarbonate content of many of the ground waters is unusually high; several samples were found that contained more than 800 parts per million. Some of the waters contained unusually large amounts of nitrate. Pima to Markham Wash.-Near the mouth of Cottonwood Wash, which enters the river from the south at Pima, and along the south side of the river there is an area extending downstream for almost 2 miles from Pima where the ground water contains 500 to 1,000 parts per million of dissolved matter. The water is of lower mineral content near the river and of higher mineral content along the extreme southern edge of the irrigated land in the valley. The rather low mineral content of the water near the river probably is caused by the underflow of Cottonwood Wash. Along the north side of the river below Pima the ground water is more highly mineralized than on the south side, with the concentration increasing downstream to the mouth of Markham Wash, about 5 miles below Pima. In places the ground water near the mouth of Markham Wash may contain as much as 9,000 parts per million of dissolved solids, and it sometimes contains nearly as much sulfate as chloride, which is somewhat unusual for the Safford Valley. Sodium is the predominant cation. On the south side of the river from about 2 miles below Pima downstream to Markham Wash increases in concentration occur, and in places near the mesa there are small areas where ground waters have concentrations as high as 4,000 parts per million of dissolved solids, mainly sodium and chloride. Markham Wash to Fort Thomas.—Below the mouth of Markham Wash the ground water on the north side of the valley is of somewhat better quality than that just above the wash. For about 2 miles down the valley the concentration of dissolved solids in the ground water ranges from 1,500 to 2,000 parts per million. Below this area the ground water increases in mineralization downstream until opposite the gaging station near Ashurst, about 7 miles below Markham Wash, it has a concentration of nearly 8,000 parts per million of dissolved matter, consisting mainly of sodium and chloride. Along the south side of the river for about 3 miles below Markham Wash the ground water contains 1,500 to 3,000 parts per million of dissolved matter, the higher concentrations occurring in localized small areas and near the mesa, and here also the more concentrated waters contain large amounts of sodium and chloride. downstream concentrated ground waters are found over a large area, and the concentrations are higher than those found in ground waters near Markham Wash. From a point about 3 miles below the wash to Fort Thomas nearly all the ground water on the south side of the valley has a high mineral content, concentrations of more than 10,000 parts per million occurring in places. These waters are of the sodium chloride type and because of their high mineral content are totally unusable. At Fort Thomas near Black Rock Wash there is a small area with ground water of low mineral content. Wells in the wash flood plain south of Fort Thomas yield some of the best water in the basin. It has a dissolved mineral content of less than 200 parts per million, most of which is calcium and bicarbonate. Where this ground water leaves the wash flood plain and enters the alluvium of the Gila River Valley there is a small area of ground water similar in character to that found in the ground water of the wash flood plain, but the effect of dilution decreases with distance from the wash. The size of the area of ground water of low mineral content at the mouth of this wash is variable and seems to be dependent on precipitation and runoff in the wash drainage area. As much as a year may be required before effects of heavy rains are noticeable in the enlargement of the area of dilute ground water at the edge of the river valley near the wash. The quality of water from individual wells in this area has changed rather rapidly at times when the amount of underflow of the wash changes. Along the north side of the river, from the gaging station near Ashurst to Fort Thomas, the ground water generally is highly mineralized and similar in composition to that on the south side of the valley, containing large amounts of sodium and chloride. However, near the north edge of the irrigated land, ground waters with concentrations of 3,500 parts per million of dissolved matter are found in places. In most of this part of the valley concentrations are considerably higher than 3,500 parts per million. Fort Thomas to Indian reservation line.—Below Fort Thomas, on the south side of the river near the mesa, water having less than 500 parts per million of dissolved matter occurs. This belt of water of low mineral content widens downstream, until near the mouth of Goodwin Wash, 5 miles below Forth Thomas, it occupies practically the entire width of the valley. Below this point to near the San Carlos Indian Reservation line the belt of this type of water narrows but is continuous along the south edge of the valley. The water contains mainly calcium and bicarbonate and is probably derived from underflow in Black Rock, Goodwin, and other washes entering the valley in this area. On the south side of the river below Fort Thomas the concentration of dissolved solids in the ground water apparently tends to increase from south to north across the valley. On the north side of the river, between Fort Thomas and the mouth of Goodwin Wash, the ground water has a concentration of 3,000 to 4,000 parts per million of dissolved solids, consisting chiefly of sodium and chloride. The temperature of water from some shallow wells in the area was found to be as high as 97° F., or about 30° above the normal for shallow ground waters in the valley. Many other wells in this part of the valley also yielded warm water. fact, together with the chemical character of the water, suggests that there is extensive leakage from deep-seated artesian aquifers in The artesian water probably rises along openings caused by faulting. Faults in the Tertiary and Pleistocene valley fill are well exposed in the vicinity. On the north side of the river, from the mouth of Goodwin Wash to the Indian reservation line, a distance of about 3 miles, the concentration of dissolved matter in the ground water ranges from about 1,500 to 3,000 parts per million, sodium and chloride being the principal constituents. Indian reservation line to Calva.—Quality of ground water between the Indian reservation line and the Calva gaging station was not studied intensively. The area is largely uncultivated, and not many wells exist besides the few that were driven for use during the investigation. In general the water sampled in the Indian reservation contains 1,500 to 5,000 parts per million of dissolved matter, mainly sodium and chloride. Near Bylas the concentration of ground waters ranges from about 2,000 parts per million on the south side of the valley to 3,000 near the river and 4,000 near the mesa on the north side of the valley. In the vicinity of Calva the concentration on both sides of the valley is about 3,000 parts per million, but in the bottom-land area the ground water is somewhat less highly mineralized. Goodwin Spring, which is just inside the Indian reservation near Goodwin Wash, about 3 miles above its mouth, yields water containing less than 300 parts per million of dissolved matter, mainly calcium and bicarbonate. Concentrations of more than 10,000 parts per million of dissolved matter are reported by Schwennessen²² for ground water on the San Carlos Indian Reservation. Graphical analyses.—Three analyses typical of waters from the Recent alluvium of Safford Valley are shown graphically in figure 6. No. 3920 represents the more dilute waters of the Recent alluvium and is typical of the underflow from side washes, which recharge the alluvial fill in the lower part of the valley. No. 1037 may be considered typical of the waters found near the center of the valley at Safford and Thatcher and of much of the ground water pumped and used for irrigation in the Safford Valley in 1944. It has a sodium percentage somewhat higher than the average but otherwise is representative. No. 3484 represents some of the more highly concentrated water found in the lower part of Safford Valley southeast of Fort Thomas. #### WATER FROM TERTIARY AND PLEISTOCENE VALLEY-FILL DEPOSITS Artesian wells.—The Recent alluvium of Safford Valley is underlain by Tertiary and Pleistocene valley fill, which was deposited when the Safford Valley was a closed basin. Near the center of the valley these Tertiary and Pleistocene fill deposits were laid down in a closed lake or playa, which was more or less saline. These lake beds were made up, for the most part, of very finely divided and almost impermeable material. However, tongues of sand and gravel occur in them that contain water under artesian head sufficient to cause the water to flow from wells drilled in the lake beds. The conditions causing artesian pressure in this area are described by Knechtel.23 The area of recharge for the formations is mainly along the base of the Pinaleno Mountains. Water occurring in the coarse materials near the mountains is of good quality, and if it is intercepted by a well before the water has passed through the lake beds in the Tertiary and Pleistocene fill it may contain as little as 500 parts per million of dissolved matter. Near Gila River, at the maximum distance from the recharge area, the waters from artesian wells are likely to be ²² Schwennessen, A. T., Geology and water resources of the Gila and San Carlos Valleys in the San Carlos Indian Reservation,
Ariz.: U. S. Geol. Survey Water-Supply Paper 450-A, p. 22, 1921. ²⁸ Knechtel, M. M., Geology and ground-water resources of the valley of Gila River and San Simou Creek, Graham County, Ariz.: U. S. Geol. Survey Water-Supply Paper 796-F, pp. 209-212, 1938. highly mineralized. In all instances sodium and chloride are predominant in the highly mineralized artesian waters of the area. The largest flowing well in the valley is near Pima. It is known as the Mack well, and was drilled originally for an oil test. It reached a depth of 3,767 feet. The flow measured in April 1942 was 1,350 gallons per minute.24 and the water had a temperature of 138° F. The dissolved solids content was about 3,400 parts per million. A flowing well with a much smaller yield and lower temperature, located at Geronimo, is 600 feet deep and yields water containing 14,400 parts per million of dissolved solids. In both wells the dissolved matter consists largely of sodium and chloride. Only a few more artesian wells exist near Gila River in the Safford Valley, but a number have been drilled south of Safford in the Cactus Flat-Artesia district on the flood plains of Marijilda and Stockton Washes. In this area about 1,000 acres are irrigated, chiefly from flowing wells, which generally yield warm water containing 1,000 or more parts per million of dissolved matter consisting almost entirely of sodium salts, with chloride and sulfate predominating. The waters also are generally very high in fluoride. Analyses for a number of the flowing wells in the Cactus Flat-Artesia area have been published.²⁵ A few of the wells in this district were resampled in 1942, and there had been no significant change in the chemical character of their water since the sampling by Knechtel in 1933 and 1934. Flowing wells have also been obtained in the vicinity of upper Ash Creek, Cottonwood Wash. and adjoining areas. The yield of the wells in these areas was generally small, and the water was of lower mineral content in most instances than artesian waters found elsewhere in the vicinity of Safford Valley. The waters low in dissolved solids contain mainly sodium and bicarbonate. Those of higher mineral content generally have sodium and chloride derived from lake-bed formations with which they have come in contact. A nonflowing artesian well furnishes the public water supply at Bylas. The water is soft and low in minerals. It contains mainly sodium and bicarbonate but is rather high in fluoride. It is likely that the water yielded by this well comes from the coarser sediments in the Tertiary and Pleistocene valley fill, which include small amounts of soluble matter. Attempts to obtain additional water supplies from artesian wells in Safford Valley are probably not advisable because of the poor quality of the water, especially for irrigation. Although some of the artesian ²⁴ Morrison, R. B., McDonald, H. R., and Stuart, W. T., Safford Valley, Graham County, Ariz., Records of wells and springs, well logs, water analyses, and map showing location of wells and springs, pp. 27-28, U. S. Geol. Survey and Arizona State Water Comm., 1942. [Mimeographed.] ²⁵ Knechtel, M. M., op. cit., p. 222.. waters are soft, they are rarely good for domestic use because of excessively high concentrations of sodium salts or because they contain objectionable amounts of fluoride. Artesian springs.—In some parts of the Safford Valley the Tertiary and Pleistocene fill deposits have been disturbed by faulting, and through the openings caused by this faulting water comes to the surface, forming springs. The larger springs of this type occur north and south of Pima, at the Indian Hot Springs north of Eden, and north and west of Fort Thomas. Water from nearly all these springs contains 3,000 to 4,000 parts per million of dissolved solids and is similar in chemical character to water from the deep Mack well near The temperatures range from 119° F. at the largest of the Indian Hot Springs to about 70° F. in some of the springs near Big Spring Wash, north of Pima. The temperature of 70° is only about 5° above the average temperature of shallow ground water in the area. As a rule the springs with low rates of flow have the lower temperatures, and the concentration of dissolved matter in the water may be more than 5,000 parts per million. The proportion of the constituents are the same, however, for most of the springs. Near the San Carlos Indian Reservation line the lake beds contain some limestone strata, and north of Bylas a number of springs issue from these limestone beds. These springs are thermal, and their water is similar in quality to that from lake beds farther up the valley, containing more dissolved solids than would normally be expected in water from limestone beds. Analysis 1816, shown graphically in figure 6, represents a sample from the Beauty Spring, largest of the hot springs at Indian Hot Springs near Eden, and may be considered typical of water from lake beds in the area. Chemical character of artesian water.—Water from the Tertiary and Pleistocene valley-fill strata in the Safford Valley and surrounding area generally is high in sodium and low in hardness. Even though calcium sulfate, mostly in the form of gypsum, is relatively common in the lake-bed formations of the valley, there is generally only a comparatively small amount of calcium in the water from these beds. It is possible that a natural softening process is going on in the lake beds by means of a base exchange reaction as the water passes through them. This effect has been noted in ground waters of other areas, 26 and silicate minerals capable of base exchange reactions exist in the Tertiary and Pleistocene valley-fill formations. Many waters from the aquifers in these formations in Safford Valley have high fluoride and borate concentrations. These constituents are usually present in ^{**}Renick, B. C., Base exchange in ground water by silicates as illustrated in Montana: U. S. Geol. Survey Water-Supply Paper 540-D. pp. 53-74, 1924. much smaller quantities in ground waters from the Recent alluvium, and the presence of large fluoride and borate concentrations in shallow ground water indicates that such a water may be contaminated by leakage of artesian aquifers in the underlying Tertiary and Pleistocene fill. Such leakage, through fault openings or by slow seepage through confining beds, may take place in several areas in the Safford Valley. #### WATER FROM MINOR WATER-BEARING FORMATIONS Some ground waters in the basin between Bonita Creek and Calva come from rocks other than those discussed. Gravel and sand in the upper reaches of some of the washes entering the valley supply small amounts of water for wells, and in places water is forced to the surface by rock ledges in the bottoms of the washes to form small springs. A few springs and wells obtain water from the fractured volcanic rocks of the Gila Mountains. Some of the spring waters are thermal. Occasionally small springs occur in the dense granites and gneisses of the Pinaleno, Santa Teresa, and Turnbull Mountains. Waters from all these sources are low in mineral content and contain mostly calcium, magnesium, and bicarbonate. In some places springs occur in the terrace gravels that cover the mesas bordering the valley. In a few places the water from these springs is low in mineral content, containing mainly calcium and bicarbonate, but generally water from the terrace gravels is highly mineralized because of the sodium and chloride it has leached from underlying lake beds and can only be used for watering stock. # GILA RIVER BASIN FROM CALVA TO COOLIDGE DAM SURFACE WATER SAN CARLOS RESERVOIR The San Carlos Reservoir, formed back of Coolidge Dam, if filled to capacity (about 1,200,000 acre-feet) would back water up the river to a point a short distance above the Calva gaging station on the Southern Pacific Railroad bridge. The reservoir has never been more than about two-thirds full, and most of the time since the dam was completed in 1928 has been less than one-third full. The analyses for Gila River at Calva show the quality of water entering the reservoir from the Gila. Indications of the quality of the reservoir water in 1941 may be obtained from the published analyses for Gila River at Ashurst-Hayden Dam near Florence, Ariz.²⁷ However, the water at this sampling point has been affected by many inflows below Coolidge Dam and may be different from the water ²⁷ Collins, W. D., Howard, C. S., and Love, S. K., Quality of surface waters of the United States, 1941: U. S. Geol. Survey Water-Supply Paper 942, p. 65, 1943. in the reservoir. Water in the reservoir in 1941 was of much better quality than normal. #### SAN CARLOS RIVER San Carlos River empties into San Carlos Reservoir about 10 miles below Calva. The San Carlos is a perennial stream for most of its length, but during dry seasons there may be no flow at its mouth. It is the last major tributary of the Gila above Coolidge Dam and has a drainage area of 1,040 square miles above the reservoir highwater line. Most of the drainage area is mountainous and within the Indian Reservation. Analyses 3975 to 3980 are the only ones available for San Carlos River. They represent the results of daily sampling during August and September 1937 at the gaging station near Peridot. This period of sampling probably represents a typical period of rapidly varying summer flow. No extremely high discharges occurred during the period, but the conductance of daily samples ranged from a minimum of 46.4 on August 7 to a maximum of 109 on September 6. The principal components of the dissolved matter in the samples were sodium, bircarbonate, and chloride. These analyses do not provide a sufficient basis for estimating average dissolved solids concentrations of San Carlos River for a year. However, the period of record includes days of very low flow, and it appears probable that dissolved solids concentrations at low flow in San Carlos River
are much lower than concentrations at low stages in Gila River at Calva. # GROUND WATER During 1940 when the reservoir was at a very low stage several observation wells were driven near the confluence of Gila and San Carlos Rivers in an area generally covered by water of the reservoir but dry during the summer of 1940. The analyses of water from these wells (3981–3986) do not differ greatly from analyses for samples collected from shallow wells in the area of the Indian reservation near Calva. These wells were flooded by the reservoir in 1941, and no further observations could be made. No other wells in the area were sampled. # PUBLIC WATER SUPPLIES Available analyses of public water supplies in the Gila River Basin and descriptions of the sources of these supplies are tabulated. (See analyses 3987–3999.) Practically all of these public supplies are obtained from ground water sources. The Clifton supply is obtained from San Francisco River and the Safford supply from an infiltration gallery on Bonita Creek. The Safford supply was formerly obtained from reservoirs on Frye Creek in the Pinaleno Mountains, but it was not always adequate, and ground waters in the vicinity of the town are too highly mineralized to be satisfactory. When a replacement was necessary in 1936 the infiltration gallery was installed on Bonita Creek about 5 miles above its mouth. A pipe line about 24 miles in length carries this water by gravity to Safford and also provides water for Solomonsville and Thatcher. The system can normally furnish about 900,000 gallons of water daily. When required, supplementary supplies are obtained from the Frye Creek system and from wells in Safford. The quality of most of the public supplies in the basin is good, except that some of the ground waters used contain rather large amounts of fluoride. Hardness of the raw water at Duncan is rather high, but the water is partly softened before delivery to consumers. None of the other supplies are treated, except for chlorination. # RELATIONSHIP OF CHEMICAL CHARACTER TO USE OF WATER #### INDUSTRIAL USE The chemical character of a water has great significance in determining the uses to which the water may be put. This is especially true of water to be used by industry. Certain industries require water of particularly good quality, but the requirements for different industrial processes vary greatly. Hardness is the most objectionable characteristic in water that is to be used in most industrial processes. It is due chiefly to the dissolved salts of calcium and magnesium, and when a hard water is used in a steam boiler a hard and adherent scale of calcium and magnesium salts forms inside the boiler. The silica in the water is also precipitated and forms part of the scale. This scale decreases the efficiency of the boiler and eventually has to be removed, often at considerable expense. For special industrial uses various other impurities may be objectionable. The Gila River Basin above Coolidge Dam is not highly developed industrially. It is only at the mining settlements of Clifton and Morenci that important quantities of water are used in industry. Probably in almost any part of the basin where a new industry required a large supply of water of good quality there would be considerable difficulty in obtaining it without excessive expense for treatment. Trouble in obtaining water was experienced by the Phelps Dodge Corp. and its predecessors in the original construction and recent expansion of ore-treatment facilities at Morenci. During early stages of development a water supply of suitable quality was found in Eagle Creek, supplemented by wells put down along the creek, and the water has been used for many years at Morenci, although a 1,500- foot pumping lift is required to raise the water to the point where it is needed. Water from the Clifton well, which also was pumped to Morenci in large quantities in 1943 and 1944, is of poor quality and generally would be considered unsatisfactory for many industrial purposes. Except for the generation of steam, however, most processes at Morenci do not require water of extremely good quality. Expansion of the ore-treatment facilities at Morenci completed in 1944 required additional water supplies. Because of uncertainty as to water rights the original plan of diverting water from San Francisco River above Clifton was not carried out. Instead, an agreement was made with the Salt River Valley Water Users Association under which the Phelps Dodge Corp. was to be allowed to divert up to 14,000 acrefect of water annually from Black River, a tributary of Salt River, in exchange for construction by the Phelps Dodge Corp. of a storage dam on Verde River, another tributary of Salt River. In 1944 a system was completed for the diversion of water from Black River into the upper Gila River Basin by pumping from Black River over the divide to the Eagle Creek Basin. The water flowing by gravity down Eagle Creek to the existing point of diversion can be pumped to Morenci. This complicated and expensive system indicates the difficulty experienced by the Phelps Dodge Corp. in obtaining satisfactory quantities of water and is typical of the difficulty that might be experienced in the establishment of new industries with large water requirements, as the waters of the upper Gila River Basin are fully utilised by existing developments. Water supplies for small industries, however, probably could be obtained in many parts of the basin. There are no industrial users in the basin, other than the Phelps Dodge Corp., that consume appreciable amounts of water. Small quantities are used in the cities and towns for steam generation. Municipal water supplies are usually treated before being used for these purposes to keep the calcium and magnesium salts in solution. Ground waters in parts of the basin are used for railroad locomotives. In Safford ground waters are used for air conditioning and cooling, for which purposes their quality is not very important. ### DOMESTIC USE Water for domestic purposes should be free from excessive amounts of dissolved mineral matter and unpleasant tastes and odors. It should also be free from harmful bacteria. Bacteriological examinations are not made by the Geological Survey; hence the analyses in this report do not indicate the suitability of water for human consumption from that standpoint. Excessive quantities of dissolved mineral matter give many of the ground waters and surface waters of the basin an unpleasant taste and make them unfit for drinking. #### PUBLIC HEALTH SERVICE STANDARDS Standards with respect to the content of dissolved matter in waters to be used for drinking and culinary purposes on common carriers have been published by the United States Public Health Service.²⁸ According to these standards, drinking water should contain no more than 250 parts per million of chloride, 250 parts per million of sulfate, and 125 parts per million of magnesium. For a water of "good chemical quality" the total dissolved solids should not exceed 500 parts per million, but if no such water is available a total dissolved solids content of as much as 1,000 parts per million is permissible. Some flexiblity is allowed in the other limits, depending on the quality of waters which are available that meet the standards in other respects, for it is known that many adults have used waters containing somewhat more dissolved matter than the recommended limits for many years without ill effects. #### FLUORIDE IN DOMESTIC WATER SUPPLIES Excessive quantities of fluoride in a water may make it unfit for domestic uses. It is in connection with drinking water that fluoride content has its greatest significance, and in recent years this problem has received considerable attention. It is commonly recognized that waters containing more than 1.5 parts per million of fluoride are likely to cause mottling of tooth enamel in children who drink such waters while their permanent teeth are forming. Mottled tooth enamel is common among the natives of the basin. The occurrence of fluoride-bearing waters in the basin has been discussed, and their distribution can be studied in the tables of analyses in this report. # AVAILABILITY OF SATISFACTORY DOMESTIC WATER SUPPLIES In most of the populated areas of the basin ground waters are the most likely to be suitable for small domestic supplies, although surface waters are utilized for some public supplies after treatment to make them safe for drinking. From analyses given in this report it is apparent that waters from a large part of Safford Valley and smaller areas in other parts of the basin are too highly mineralized to be satisfactory for most domestic uses. However, in 1944 there was practically no part of the basin with a permanent population located more than a few miles from a supply of water satisfactory for domestic use. In the vicinity of San Simon only a few waters were found that contained sufficiently small amounts of fluoride for them to be satisfactory for drinking water for young children, and in this part of the ²⁶ Public Health Service drinking water standards and manual of recommended water sanitation practice: Reprint no. 2697, U. S. Pub. Health Serv. Repts., vol. 61, no. 11, pp. 371–384, Mar. 15, 1946. basin, drinking water free from excessive amounts of fluoride might be difficult to obtain. #### LIVESTOCK USE Drinking water for livestock is of importance in the basin. Although large quantities of water are not required for this purpose, a large number of small scattered developments are necessary. The quality of water need not be as good as that for human consumption, for most animals can tolerate water several times as concentrated as can be used by man. Only the most highly mineralized waters of the basin are unsatisfactory for livestock. # IRRIGATION USE In the upper Gila River Basin a very large amount of water is used for irrigating crops. Compared with the quantities used in
this manner, the quantities used in other ways are insignificant. In irrigation practice the water applied is disposed of in several different ways. Part is evaporated, and part is used by the plants in their growth or is transpired by them. If an excess of water is applied to the land, part of the excess will run off the surface of the field, and part probably will penetrate the soil below the root zone of the plants and continue down to the ground-water reservoir. The dissolved solids that were originally contained in the water cannot be evaporated or transpired. They may be used to some extent by the plants, but most of them must be removed in some other manner, or continued application of irrigation water may result in such a large accumulation of salts in the soil at the root zone of the plants as to affect plant growth. The concentration of dissolved salts in the rootzone water is usually several times that of the applied irrigation water but should be kept within certain limits. Harmful accumulations of salts in the root zone can generally be prevented by adding an excess of water during irrigation so that some of the water passes downward to the water table, carrying with it salts leached from the soil. the drainage of the land is as good as it is in the Safford Valley this procedure is generally effective, but the more dissolved mineral matter the irrigation water contains when it is applied the more difficult it is to hold down the concentration of the dissolved solids of the root-zone water. This is only one phase of a problem that becomes more complex if the water used has a high percentage of sodium. The analyses in this report include a computation of the percentage of sodium where sufficient analytical data are available. A water containing a high percentage of sodium tends to cause a base exchange reaction in the soil when used for irrigation. In this reaction the calcium in the soil is replaced by the sodium in the water, and as a result the soil becomes less permeable and is more difficult to cultivate. The base exchange reaction cannot be prevented by using an excess of water, but in some areas it has been controlled by adding gypsum to the water or soil. This treatment increases the amount of calcium in the water and retards the base exchange reaction. ## BORON IN IRRIGATION WATER The element boron is essential to proper plant growth. If, however, boron is present in water or soil in excess of a few tenths of a part per million some plants are likely to be damaged. Therefore relatively small amounts of boron in irrigation water may make the water unfit for use on certain types of crops, and the concentration of boron may be sufficient to render the water entirely unfit for all but the most boron-tolerant plants. Irrigation water containing more than 0.5 part per million of boron, 2.7 parts per million when reported as BO₃, can damage the more sensitive crops.²⁹ The crops most sensitive to boron are lemons and grapefruit,³⁰ neither of which are grown in the upper Gila River Basin. Peach, apple, and pecan trees are reported to be sensitive to boron. The first two are grown to a limited extent in Safford Valley and elsewhere in the basin, and in recent years pecans have been cultivated in considerable quantity, though largely in the upper part of the Safford Valley. Cereal grains, corn, and cotton are reported as semitolerant. It is possible that ground waters in some parts of the lower Safford Valley contain enough boron to injure cotton if the soil is not sufficiently well-drained to prevent accumulation of boron in the soil. Onions, alfalfa, and sugar beets are considered tolerant and probably would not be damaged by waters containing relatively high concentrations of boron. Damage from excessive boron concentrations has not been reported in the Safford Valley or other parts of the upper Gila Basin, but it is possible that continued use of ground water for irrigation may cause damage from this element in time if the ground waters containing large amounts of boron are used to irrigate sensitive crops. # CLASSIFICATION OF IRRIGATION WATERS From the aspects of the problem of quality of irrigation waters which have been mentioned, it is apparent that it would be difficult to fix definite limits for mineral content of satisfactory irrigation water. Besides the effects that may result from the way in which a water is applied to the land, the texture and drainage of the soil, and ²⁹ Scofield, C. S., and Wilcox, L. V., Boron in irrigation water: U. S. Dept. Agr. Tech. Bull. 264, pp. 9-10, 1931. ³⁰ Eaton, F. M., Boron in soil and irrigation waters and its effect on plants: U. S. Dept. Agr. Tech. Bull. 448, p. 9, 1935. sensitivity to salts of the crops grown, there are further influences, such as the climate and rainfall of the region, which may be of considerable importance. A flexible set of standards for classification of irrigation waters on the basis of the dissolved solids that they contain has been prepared by the Department of Agriculture.³¹ Three classes of water are set up as follows: | Specific conductance (K×10 ⁵ at 25° | Class 1 | Class 2 | Class 5 | |--|--------------|------------|---------| | C.) | <100 | 100-300 | >300 | | Boron (p. p. m.) | < 0.5 | 0. 5-2. 0 | >2.0 | | Borate (p. p. m.) | <2. 7 | 2. 7–10. 8 | >10.8 | | Sodium (percent) | <60 | 60-75 | > 75 | | Chloride (p. p. m.) | <177 | 177–355 | > 355 | Waters in class 1 are considered "excellent to good, suitable for most plants under most conditions"; those in class 2 "good to injurious, probably harmful to the more sensitive crops"; and those in class 3 "injurious to unsatisfactory, probably harmful to most crops and unsatisfactory for all but the most tolerant." The same publication lists the crops that may be grown satisfactorily on soils of weak, medium, and strong salinity. Plants most sensitive include beans, field peas, oats, and wheat. Less sensitive plants include onions and most of the other vegetables, most grains, and grain crops raised for hay. The plants most tolerant to dissolved solids include cotton, alfalfa, sugar beets, and most grasses. #### SURFACE WATERS USED FOR IRRIGATION On the basis of these standards, it is possible to evaluate roughly the water supplies in the Gila River Basin above Coolidge Dam for use in irrigation. All the surface waters and probably most of the ground waters used for irrigation in the Duncan-Virden area are of "excellentto-good" quality. However, the ground waters in sections of the Gila Valley southeast of Duncan and between Duncan and Virden are either in the "good-to-injurious" or "injurious-to-unsatisfactory" classifications. These waters were not being used very extensively for irrigation at the time of the investigation. Little trouble has been encountered in the Duncan-Virden Valley with excessive amounts of salts in the soil in the past, and, unless larger quantities of the more highly mineralized waters are used, little trouble from this source may be expected in the future. Some of the more sensitive crops are rather widely grown in this part of the basin, and they would probably show the effects of excessive salt content of the soil rather quickly. ³¹ Wilcox, L. V., and Magistad, O. C., Interpretation of analyses of irrigation waters and the relative tolerance of crop plants, 8 pp., Riverside, Calif., U. S. Bur. Plant Industry, Soils, and Agr. Eng., May 1943. [Mimeographed.] In the lower part of the basin the surface waters are generally not as good in quality as those available for use in the Duncan-Virden Valley. An indication of the chemical character of surface waters available for irrigation along Gila River below Bonita Creek may be obtained from the analyses in this report. Because the demand for water for irrigation is highest at times of low river flow when salt concentrations in the water are near their maximum, the average concentration of water diverted from the river is likely to be higher than the annual weighted average computed for the river at the point of diversion. Even at low flow, however, the water of the river at the gage near Solomonsville is generally in the upper part of the "good-to-injurious" classification. Since the average quality of water diverted is probably better than that of the river at low flow. there is little reason to believe that surface waters would be likely to cause any difficulty from salt accumulation in the upper part of the Safford Valley. The area is well-drained, and in the past the quantities of water applied were in excess of the amounts actually required by the plants, which resulted in continuous leaching of the soil and root zone. In only a few small areas was damage from salt accumulation above Safford reported in a soil survey of the area made about 10 years ago.32 Below Safford the concentration of dissolved matter in the river water increases rapidly, and canals diverting water from the river in the lower part of the Safford Valley may at times receive water that is near or within the "injurious-to-unsatisfactory" classification. When the river flows are higher the water is generally much better in quality, and at least a part of the damage done by use of the more concentrated waters may be remedied by heavy applications of the flood waters. The average quality of surface water used in most of the lower part of the Safford Valley is poorer than that of water used above Safford and probably is near the "good-to-injurious" class. Some damage from accumulation of salt may be observed in parts of the lower Safford Valley, and it was reported in several areas by Poulson and Youngs.³³ It is generally believed by residents of the Safford Valley that lands in the upper part of the valley are considerably more productive than those in the lower part. Drainage conditions are good in most of the lower part of the valley, and the crops raised are those less sensitive
to salts, so that waters of rather poor quality can be used without the damaging effects that might be the result of using similar waters in less well drained localities. The weighted average analysis for Gila River water at Bylas indicates that the water reaching the San Poulson, E. N., and Youngs, F. O., Soil survey of the upper Gila Valley area, Arizona: U. S. Dept. Agr., Bur. Chem. and Soils [Soil Survey Rept.], ser. 1933, no. 15, 1938. Poulson, E. N., and Youngs, F. O., op. cit., p. 29. Carlos Reservoir from this source during 1943 and 1944 was of the "good-to-injurious" type. In a year of higher flow the water would probably have been of somewhat better quality. From the standpoint of quality, waters of Gila River used for irrigation in the Safford Valley have apparently been satisfactory, and they have caused little damage on the whole, in spite of their occasional high concentrations of dissolved mineral matter. If conditions should continue in the future about the same as in the 60 years before 1940, there would be no reason to expect any great amount of trouble caused by salinity from continued use of Gila River water. ## GROUND WATERS USED FOR IRRIGATION Artesian water—Water from artesian wells is used to some extent for irrigation in the basin. In the Cactus Flat-Artesia area, near the town of San Simon, and in a few places along the northern edge of the Pinaleno Mountains, there are small acreages irrigated mainly with ground water from flowing wells. In most of these places the acreages under cultivation have decreased in recent years, generally because the flow from the wells has decreased. Except in the Cactus Flat-Artesia area these artesian waters are low in dissolved matter. There, however, most of the waters are rather highly mineralized, and all of them have a very high percentage of sodium. Continuous use of these waters for irrigation has noticeably impaired the productiveness of some of the land in the Cactus Flat-Artesia area. Artesian water is available in the Safford Valley, but because of its poor quality it is used for irrigation to only a very limited extent. For several years the highly mineralized water from the Mack well has been allowed to flow into the Dodge-Nevada canal below Pima and mix with the surface water in the canal, and the resulting water has been used for irrigation. Analyses of water from the canal below the well and of water from the well show that at times the canal water practically all comes from the artesian well. Like other artesian waters in the Safford Valley, the water of the Mack well contains large amounts of sodium and chloride, the percentage of sodium being very high. The well water is classified "injurious-to-unsatisfactory," but if mixed with large enough amounts of dilute surface water the mixture probably is suitable for some crops. Shallow ground water—The entire problem caused by the salt content of irrigation waters in the Safford Valley has probably been greatly aggravated in recent years by the increasing use of shallow ground waters for irrigation, though the seriousness of the problem is not yet fully realized in most of the area. Use of shallow ground water in the Duncan-Virden Valley and more especially in the Safford Valley to provide supplementary supplies for irrigation has increased greatly since its beginning about 1938. In 1944 one-third to one-fourth of the total amount of irrigation water used in the Safford Valley came from wells, but only a small area is entirely dependent upon shallow ground water for its water supply. In the Duncan-Virden Valley the quality of ground waters that are being used extensively is probably satisfactory, but in the Safford Valley the conditions are very different. It is recognized that much of the recent development of ground-water irrigation in the Safford Valley was necessary to insure a sufficient quantity of water for all the land that is under cultivation when the river is at low stages. However, in many instances little attention has been paid to the quality of the ground water and its suitability for irrigation, and much water has been pumped and used that should be classified as unfit for that purpose. There are ground waters in parts of the Safford Valley that contain small amounts of dissolved matter and can be grouped in the "excellent-to-good" class. However, most of the ground water that is pumped from the irrigation wells is either near the upper limit of concentration for the "good-to-injurious" class or within the "injurious-to-unsatisfactory" group. If the ground waters are to provide each year as large a part of the irrigation supplies as they did in 1944, precautions will be required to avoid serious damage. It is possible that the drainage of the valley is sufficiently good to allow the continuous use of waters that would elsewhere be considered unfit for irrigation, but this cannot be ascertained until the extensive use of ground waters has been continued for a longer period. In the meantime it should be more widely recognized that many of the waters being pumped and used for irrigation in the Safford Valley are more highly mineralized than would usually be considered satisfactory and that such waters should be used with care. Irrigation practices that are followed in parts of the Safford Valley tend to counteract to some extent the effects of the highly mineralized waters. A large amount of the pumping is done by the various organized canal companies in the valley, and the water pumped by them empties directly into main irrigation canals where it is mixed with water from Gila River. This mixture applied to the land from the canals diverting water above Safford is probably of satisfactory quality for irrigation most of the time. The river water available at times of low flow for canals diverting below Safford is likely to contain considerable amounts of dissolved matter and may not be appreciably better in quality than the ground water pumped into the canals. Also ground water pumped in the lower parts of the valley is likely to be more highly mineralized than that obtained above Safford. At times of high flow the water from the river is of satisfactory quality, but generally little pumping is done at such times. Much ground water throughout the valley is pumped by individual well owners or from wells owned by two or more farmers and is applied directly without mixing. In some instances the salts that may be left in the soil by the ground water thus used may be leached out by later irrigations with water of low mineralization from surface sources. It is, of course, inadvisable to use for irrigation ground waters containing amounts of dissolved matter greater than the lower limits of the "injurious-to-unsatisfactory" class, except in emergencies when no other water is available. #### REMOVAL OF SALTS FROM THE BASIN BY DRAINAGE INTO GILA RIVER Earlier in this report it was shown that the soluble salt load carried by Gila River past the Calva gaging station during the 1944 water year was 105,000 tons. This salt load was 20,900 tons greater than the load carried by the river past the gaging station near Solomons-ville in the same period. According to the usual concept, a favorable drainage condition in an irrigated area is indicated when a greater quantity of soluble solids leave the area by drainage than enter the area in the water supply. The simplest interpretation of the gain in salt load of Gila River as it passes through Safford Valley would be that a favorable drainage condition exists, with excess soluble salts being removed from the soil and carried off in drainage waters. However, the significance of the observed gain in load of Gila River in Safford Valley cannot be interpreted so simply. Unknown and probably large quantities of soluble matter are added to the Calva load by surface runoff entering the river below the Solomonsville gaging station. Inflows of artesian water which occur in the lower part of the valley contribute large amounts of soluble salts to the area. The amounts so added are probably sufficient to equal or exceed the observed gain in load of the river from the head of the valley to Calva. Soluble salts from these two additional sources represent for the most part leaching of Tertiary and Pleistocene fill deposits rather than irrigated land, and the gain in river load thus produced is not indicative of conditions in the irrigated lands. Although it is probable that drainage conditions are generally favorable in much of Safford Valley, the observed gain in load of soluble matter of the river should not be taken to indicate that soluble salts are not accumulating in any of the irrigated soils of the valley. The extent to which the data for the 1944 water year may be indicative of conditions in other years is not known. The period was abnormally dry, and the results for the year probably are not the same as would be obtained in a period of normal or above normal precipitation and runoff. In considering the "salt balance" for the valley the situation is further complicated because of the increasing use of ground water for irrigation. If the ground water pumped in 1944 had an average concentration of about 2 tons per acre-foot (based on analysis 1,037, fig. 6), the total pumpage of about 52,000 acre-feet 34 in the valley that year would have contained 104,000 tons of dissolved salts, a quantity practically equal to the 105,000 tons of dissolved matter that left the valley in the river at Bylas during the year. If the productiveness of the lands of Safford Valley is to be maintained, the salt left by evaporation and transpiration of the irrigation water must be disposed of in some way. If it all were leached from the soil and returned to the ground water and the ground water did not increase in concentration, nearly all the quantity should show up as a gain in salt load of the river in the valley. These would, of course, be impossibly ideal conditions, and
some accumulation of salts in both the soil and ground water probably cannot be avoided. However, unless the future annual gain in salt load of the Gila River between the Solomonsville and Calva gaging stations averages several times as much as that for the year ended September 30, 1944, it would seem that significant quantities of soluble salts are accumulating in the soil and shallow ground waters of the Safford Valley, particularly in the lower part of the valley. #### ANALYSES OF SURFACE WATERS AND GROUND WATERS The analyses of surface-water and ground-water samples from the Gila River basin are included in the following tables. Each analysis has been assigned a number for purposes of identification. ²⁴ Turner, S. F., and others, Ground-water resources and problems of the Safford Basin, Ariz., p. 8, U. S. Geol. Survey, 1946. [Mimeographed.] Changes in the chemical character of the water of Gila River between the mouth of Blue Creek near Virden, N. Mex., and the bridge on United States Highway 666 south of Clifton, Ariz. | | Per- | so-
dium | | 8 4 8 8 | 24 | 8888 | 88848 | 8 | |-------------------------------|--|--|---|---|--|--|--|---------------------------------| | | iness
4003 | Non-
car-
bon-
ate | | 0000 | 00 | 000 | 00000 | 0 | | | Hardness
as CaCO ₃ | Total | } | 134
145
117
156 | 125
264 | 136
134 | 174
174
198
206 | 221 | | | Dissolved | Tons
per
acre-
foot | | 0.33
.41
.57 | 22. | 4 :4: | .35
.35
.41
.47 | . 74 | | | Dissc
sol | Parts
per
mil-
lion | 1
1
1
1 | 888
14
14
14
14
14
14
14
14
14
14
14
14
14 | 400
522 | 325
342
341 | 272
254
303
545 | 544 | | | Ä | (RON) | | | | | | | | | Fluo- | (F) | | | | | | | | | Chlo | (i) | | 382118 | 22 | 888 | 18
19
27
20
20 | 28 | | | Sul- | (*08) | | E842 | 125
126 | 233 | 38
37
170 | 165 | | | Bicar- | (HCO ₃) | | 24233 | 185
336 | 188
223
225 | 242
231
276
272 | 270 | | in l | Sodium
and po- | tassium
(Na+K) | | 44
75
99 | 101 | 38 K | 35
42
88
122
122 | 115 | | 1 | Mag- | (Mg) | | 2222 | 17 | 222 | 2123 | 21 | | out to | Ċ ai - | (Ca) | | ¥828 | 222 | 19
38
37 | 22 22 23 24 | 72 | | Analyses in parts per million | Spe-
cificcon-
duct- | (KX104
at 25°
C.) | | 85.238 | 88 | 45 85 85
4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 748218 | 98 | | (Aug | | Net
gain
(+) or
loss (-)
(unad-
justed) | | 12.83.1
15.33.4
14.44.4
14.44.4 | 3.0- | 15.3+
15.2+
1.8- | 36.1 | | | | Change in discharge from preceding measuring point (second-feet) | Inflow
(+) or
diver-
sion
(-) | | 44.94.
26.83.
1.8.32.
1.9.34. | 0.00 | | 0.08
0.09
0.00
1.00
1.00
1.00
1.00
1.00
1.00 | | | | Dis- | ond-
feet) | 95.8 | 31.0
18.5
18.5
17.4 | 17.7 | 28.5
7.7 | 31.
0.444.0
0.404 | 000 | | | Miles
below | tial
point | 0 | 20.5
20.5
24.5
24.5 | 24.5 | 37.1
50.6 | 20.21.12.90
20.25.02.25.02.25.02.25.02.25.02.25.02.25.02.02.02.02.02.02.02.02.02.02.02.02.02. | 31.7 | | | | Date sampret and sampring Forms | May 16:
Below Blue Creek near Virden, N.
Mex. | | May 17:
Below Colmenero Canal head
At Sandia Wash. | At York, Ariz
At Rustlers Canyon
At gaging station near Clifton, Ariz. | July 9: Below Blue Creek near Virden, N. Mox. At Virden highway bridge. At Virden, N. Mox. At New Mexico-Arizona State line. At Dungan highway bridge. At Dungan highway bridge. Rahow Columbaton Ganal head | At Sandia Wash At Sheldon, Ariz | | | Anal- | Z
O
O | | H01004 | 70.00 | r-∞0 | 9 1224 | 15 | Changes in the chemical character of the water of Gila River between the mouth of Blue Creek near Virden, N. Mex., and the bridge on United States Highway 666 south of Clifton, Ariz.—Continued | | Per-
cent | so-
dium | 83 24
63 24 | 883 | 29
52 | 33.33 | 22
25
25
25
25
25
25
25
25
25
25
25
25
2 | |-----------------------------|--|--|---|---|--|---|---| | | | Non-
car-
bon-
ate | 000 | 000 | 0%0 | 000 | 00000 | | | Hardness
as CaCO3 | Total | 135
113
106 | 196
192
226 | 270
263
138 | 181
204
205 | 223
217
215
186
172 | | | Dissolved solids | Tons
per
acre-
foot | 0. 45
. 45
. 44 | .38
.41 | 864 | 834 | 848444 | | | Disse | Parts
per
mil-
lion | 328
328
3 20 | 282
267
305 | 402
535
325 | 281
308
325 | 351
356
356
341
345 | | | ż | trate
(NO ₃) | | | | 1.22 | 111141
0072 | | | | ride
(F) | | | | 2.1 | | | | | (CI) | 488
828 | 16
15
19 | 22
94
34
34 | 288 | 282288 | | | | fate
(SO4) | 69
63 | 39
38
37 | 53
160
75 | 35
53
53 | 2222 | | | Bicar- | bonate
(HCO ₃) | 222
217
214 | 252
238
277 | 357
292
198 | 244
268
265 | 25,280
25,180
25,180
25,180
25,180
25,180 | | nom) | | and po-
tassium
(Na+K) | 8883 | 34
29
31 | 52
96
70 | 45
46
46 | 64 52 53
52 54 69
66 68 68 68 68 68 68 68 68 68 68 68 68 6 | | 101 | Mag- | sium
(Mg) | 11
9.2
8.7 | 15
14
15 | 11 25 11 | 15
18
17 | 19
17
17
15 | | parts p | | cium
(Ca) | 888 | 4 22.88 | 32% | 48
52
46 | 850889 | | Analyses in parts per munon | Spe-
cificon-
duct- | ance
(KX10 ⁵
at 25°
C.) | 56
57
56 | 44
50 | 70
88
54 | 46.5
51.0
54.6 | 59.0
59.0
58.9
57.4
56.2 | | pro l | Change in dis-
charge from
preceding
measuring
point (second-
feet) | Net
gain
(+) or
loss (-)
(unad-
justed) | 12.9+
9.6+
-6- | 3.48 | 2.6— | 21.3+ | 2.9-
5.6-
10.1+
7.5+ | | | | Inflow (+) or diversion (-) | 000 | 33.2- | 0 | 00 | 0 0 1.7- | | | | (second- | 12.9
22.5
21.9 | 20.4
9.4
9.0
9.0
9.0 | 3.9 | 81. 0
44. 3
65. 6 | 40.2
37.3
31.7
40.1 | | | Miles
below | ini-
tial
point | 37. 1
44. 5
50. 6 | 0
9.0
15.5
15.5 | 15.5
20.2
37.1 | 0
15.5
24.4
4 | 24.5
27.7
31.7
37.1
44.5 | | | | Date sampled and sampling point | July 10: At York, Ariz At Rustlers Canyon At gaging station near Clifton, Ariz | Sept. 3: Below Blue Creek near Virden, N. Mex. At Virden highway bridge. At Virden, N. Mex. At Virden, N. Mex. At Virden, N. Mex. | Sept. 4: At New Nexico-Arizona State line At Duncan highway bridge At York, Ariz | Oct. 8: Below Blue Creek near Virden, N. Mex. At New Mextoo-Arizona State line At Unrean highway bridge. Above Colmenero Canal head | Oct. 9: Below Colmenero Canal head At Sandia Wash At Sheldon, Ariz At York, Ariz At Rustlers Canyon | | | Anal- | ysis
No. | 16
17
18 | 19
21
21 | ន្តន្ត | 22,82 | 823828 | | | A | NALISES | OF SU | RFACE | W A | TERS | AND G | ROUND | WATERS | |--|--|---|---|---|--|--|--|--
--| | 47 | 33 | 8284 | 88 | 46
49 | 49 | 4 | 26 | 8488 | 88888 | | 0 | 0 | 0000 | 00 | 000 | 0 | 0 | P-10 | пооп | 00000 | | 166 | 164 | 175
176
187
202 | 122 | 229
195
176 | 172 | 193 | 116
116 | 1111 | 124
133
140 | | .47 | ×8. | 88.
84.
12. | 529 | 85.45. | .51 | 16. | ន់ន | 8848 | 8888 | | 343 | 256 | 257
264
308
374 | 394
386 | 24 88
88 88
88 88 8 | 377 | 374 | 169 | 150
180
205 | 222
222
232
232
232
243
253
253
253
253
253
253
253
253
253
25 | | 1.2 | 4. | .i.4.&i.e. | 1.0 | 1.0 | 4. | | | | | | | | | | | | | 1 1 | | | | 29 | 19 | 17
18
18 | 88 | 48.85
78 | 35 | 88 | 0.0
9.0 | 2112 | 51
71
71
71 | | 8 | 32 | 88
64
64 | 76 | 888 | 18 | 74 | 88 | 8888 | 7:14:44
24:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:44
34:4 | | 252 | 224 | 240
271
294 | 294 | 304
270
248 | 251 | 259 | 133 | 133
135
152
164 | 164
167
168
173
174 | | - 88 | 37 | 88 88 88
88 88 88 | 53.53 | 47. | 11 | 69 | 80 | ន្តន្តន្តន | 88222 | | 13 | 12 | 41
13
14
14 | 16 | 18
17
15 | 14 | 19 | 01
01 | 8.7
9.6
12.6 | 9.6
100
110
110 | | 45 | 46 | 74
62
52
58 | 80 | 62
94
94 | 46 | 94 | 88 | 8888 | 33
33
38
38
38 | | 56.7 | 43.7 | 51.8
51.8
59.4 | 63.0
62.8 | 67.3
63.9
61.0 | 61.5 | 60.6 | 27.8 | 27.6
30.7
34.5 | 34.5
36.3
37.4
39.0 | | 4.6+ | | 1.7
6.6
4.4
4.4
4.4 | 4.70.69
7.70.09
1 1 1 | 8.3+ | 3.1+ | | 20.7+ | 26.8
1.6
1.8
1.8
1.8
1.8 | 23.3-
27.4+ | | 0 | | 25.6
0.2.25
+
1 - 8
+ 1 - 1 | 000 | 2.6- | 0 | | 49.7- | 32.4-
17.6-
2.2- | 0
6.7
 | | 52.2 | 56.0 | 32.1
16.5
24.7
34.1 | 36.7
22.2
22.8 | 29.3
35.0
41.9 | 45.0 | 51 | 309
280 | 25.2
25.2
25.2
25.2
25.2
25.2
25.2
25.2 | 250
250
250
254
254
254
254 | | 50.6 | 0 | 9.0
12.5
15.5
20.2 | 20.2
24.5
27.7
31.7 | 31.7
37.1
44.5 | 50.6 | 50.6 | 9.0 | 9.0
12.5
15.5
20.2 | 20.2
24.5
27.7
31.7 | | Oct. 10:
At gaging station near Clifton, Ariz | Oct. 21:
Below Blue Creek near Virden, N.
Mex. | Oct. 22: At Virden highway bridge———————————————————————————————————— | Oct. 23: At Duncan highway bridgeBelow Colmenero Canal headAt Sandis WeshAt Sheldon, Ariz | Oct. 24:
At Sheldon, Ariz
At York, Ariz
At Rustlers Canyon | Oct. 25:
At gaging station near Clifton, Ariz | Oct. 29:
At gaging station near Clifton, Ariz | May 26:
Below Blue Creek near Virden,
N. Mex.
At Virden highway bridge. | May 27: At Virden highway bridge———————————————————————————————————— | May 28: At Duncan highway bridge. Below Colmenero Canal head. At Sandia Wash. At Sheldon, Ariz. | | 83 | 34 | 35
37
38 | 30 | 444 | 4 | 45 | 46 | 48
50
51 | 55
55
55
55 | Changes in the chemical character of the water of Gila River between the mouth of Blue Creek near Virden, N. Mex., and the bridge on United States Highway 666 south of Clifton, Ariz.—Continued | 1 2 = | . <u>в</u> | 283 | 888 | 828 | 24
24
25
25
27 | 24228 | |--|--|--|--|---|--|---| | | dinip | | | | | | | Hardness
as CaCO3 | Non-
car-
bon-
ate | 000 | 000 | 000 | 0000 | | |
Har
as C | Total | 136
142
131 | 168
159
176 | 174
202
151 | 226
226
228
228 | 237
149
152
126 | | Dissolved | Tons
per
acre-
foot | 28.88 | 58.89 | . 35
. 49
. 57 | . 58
. 62
. 57
. 59 | 25.84.4 | | Diss | Parts
per
mil-
lion | 235
240
249 | 257
260 | 258
361
417 | 425
458
418
433 | 368
352
347 | | ż | (NOs) | | 8.1.
8.4.8 | 4.1.8 | 4444
8000 | 1:2:1 | | Fluo- | (F) | | 1111 | 1.6 | 1111 | 1111 | | | (fo) | 188
188 | 15
13
15 | ¥28 | 33.4 | 33 24 88 | | Sul- | (tos) | 24 8 E | 3338 | 8848 | 77
101
97 | 5888 | | Bicar- | (HCO ₃) | 174
178
178 | 22.
22.4
23.1 | 83.88 | 320
315
281
288 | 235
235
210 | | Sodium
and po- | tassium
(Na+K) | 37
44 | 88 88 | 38 89 103 | 75
88
76 | 8828 | | Mag-
ne- | Sium
(Mg) | 12
10 | 8228 | 12
14
13 | 14
16
16
19 | 8272 | | Cal. | (Ca) | 38
37
36 | 843 | 3888 | 8248 | 3482 | | Spe-
cific
con-
duct- | ance
(KX10 ⁵
at 25°
C.) | 40.1
40.7
41.2 | 43.3
44.8 | 44.3
61.6
66.4 | 77.0
74.1
72.4 | 74.8
61.1
59.3
67.7 | | in dis-
from
ding
uring
second-
it) | Net
gain
(+) or
loss (-)
(unad-
justed) | 27.0+
8.0- | | | | | | Chauge in discharge from preceding measuring point (second-feet) | Inflow (+) or diversion (-) | 0 | | | | | | Dis- | ond-
feet) | 23.2
259
251 | 33.52
33.52 | 31.1
15.9
41.9 | 40.9
37.5
28.0
18.8 | 32.1.2
30.1.1
28.6 | | Miles
below | tial
point | 37.1
44.5
50.6 | 9.0 | 12.5
15.5
20.2 | 20.2
24.5
27.7 | 31.7
35.6
37.1
40.1 | | · | Date sampled and sampling point | May 20:
At York, Ariz
At Rustlers Canyon
At Rustlers Canyon
At gaging station near Clifton, Ariz | July 7: Below Blue Creek near Virden, N. Mer. At Virden highway bridge. At Virden, N. Mex. | July 8:
At Virden, N. Mex.
At New Mexico-Arizona State line
At Duncan highway bridge | July 9: At Duncan highway bridgeBelow Colmonero Canal headAt Sandia WashAt Sheldon, Ariz | July 10: At Sheldon, Ariz Near Apache Grove, Ariz At York, Ariz. 3 miles below York, Ariz | | Anal- | No. | 57
58
59 | 62 60 | 848 | 86
89
89 | 2222 | | 466 | July 11: 3 miles below York, Ariz At Rustlers Canyon. At gaging station near Clifton, Ariz | 40.1
50.6 | 84.89
8 4.00 | | 59.8
58.7
57.2 | 388 | 2112 | 883 | 223 | 727 | 2223 | 11.6 | 4.1.0.8 | 358
348
342 | 64.4. | 135 | 000 | 52
58
58 | |-----|--|--------------|-----------------|-----|----------------------|-------|--------|----------|-----|-----|------|------|---------|-------------------|-----------------|-----|-----|----------------| | 11 | June 15: At gaging station near Clifton, Ariz | 50.6 | ន | | 53.6 | | | | | | 30 | | | | | | | | | 778 | 1944 Aug. 1: At New Mexico-Arizona State line 78 At gaging station near Olitton, Ariz | 15.5
50.6 | | | 51.2
53.8 | 39.00 | 12 5.9 | 11.00 | 262 | 38 | 17 | 9,61 | 1.5 | 297
320 | 3 .4 | 174 | 00 | 88 | | 82 | Nov. 1:
At New Mexico-Arizona State line
At gaging station near Clifton, Ariz | 15.5
50.6 | | 1 1 | 44.6
50.6 | 44 | 9.6 | 45
60 | 523 | 30 | 27. | 44 | 1.0 | 300 | .38 | 152 | 00 | 624 | Chemical character of ground waters in the Gila River Basin, Grant County, N. Mex. | | wn | Percent sodi | ∞ | 18 | 282 | 32 | |--------------------------------|---------------------|------------------------------------|---------------------------------|--------------------------|---|---| | | ssə | nbtal hatoT
ODsO as | 1, 613 | 341 | 883
522 | 171 | | | lved | Tons per | 3.11 | . 58 | 1. 97
1. 05 | .36 | | | Dissolved
solids | Parts per
moillim | 2, 288 | 426 | 1,449 | 262 | | | (\$(| ON) stertiN | 8.0 | 4. | 20.5 | 1.8 | | | (| Fluoride (F | 7 | 1.5 | 1.4 | 2.0 | | | (1 | O) əbiroldO | 21 | 27 | 31 | 13 | | | (1 | OS) stellus | 1, 519 | 61 | 914 | 32 | | | | Bicarbonate
(HCO3) | 164 | 379 | 144
439 | 236 | | | potas- | bns muibo2
sN) muis | 62 | 35 | 109 | 37 | | | (BMg) | Magnesium | 29 | 35 | 93 | 13 | | | (1 | O) muioleO | 536 | 79 | 268
56 | 47 | | Analyses in parts per million] | -toubre
18 au | Specific co
ance (K×
25° C.) | 255 | 70.3 | 182 | 43.9 | | s per n | (.H°) 9 | тизвтэфшэТ | 69 | | 69 | 75 | | in part | ive ber | olleg) bleiY
etunim | - | 100 | - | | | alyses | (1991) [[| Depth of we | | | 20 | | | <u>¥</u> | | mpled | 0, 1941 | 5, 1941 | 7, 1941 | 7, 1941 | | | | Date sample | Sept. 20, 1941 | Oct. | Sept. 17, 1941
do | July | | | | Location | T. 16 S., R. 21
SW½ sec. 20. | N. sec. 16. | | T. 19 S., R. 19 W.:
NE½SW¼ sec. 18 | | | | Source | Spring in bed of Bitter Creek. | Thanksgiving Mine Spring | Dug well Spring at fault in volcanic rocks. | Spring at mouth of wash at
Fuller Ranch. | | | | oV sisylanA | 82 | 88 | 85 | 98 | Chemical character of ground waters in the Gila River Basin, Hidalgo County, N. Mez. 879751---50-----6 | | wn | Percent sodi | | 1 | 8 | æ | 30 | 27
31
36 | 26 | 38 | |-------------------------------|---------------------|------------------------------------|--------------------------------------|-----------|--|-------------------------------|---------------------------------|--|-------------------------------|--| | | SS9 | nbrad latoT
aODaO aa | 27 | 105 | 167
172
240
195 | 235 | 189 | 256
192
241 | 135 | 2, 325 | | | lved | Tons per
acre-foot | | | 1.26 | . 73 | .40 | 94.
88.
83. | .43 | 6. 73 | | | Dissolved
solids | Parts per
millim | | | 929 | 540 | 292 | 361
410 | 315 | 4, 950 | | | (86 | OV) ətertiV | 2.7 | 5.5 | 20
2. 3.5
2.8
3.5 | 1.6 | 14 | 5.0
1.8 | 9. | 199
62 | | | (| Fluoride (F) | 1.2 | 3.4 | 44.5. | 6.
8 | 1.3 | 1.5 | | 2.6 | | | (1 | Chloride (C | 37 | 31 | 38
24
17 | 37 | 8 | 22 13 | 13 | 83 | | | (| OS) stallus | 56 | 2 | 2488
8488 | 72 | 36 | 312 | 56 | 3,070 | | | | Bicarbonate
(HCO ₃) | 163 | 538 | 828
448
264
264
264 | 448 | 232 | 337
249
274 | 315 | 337 8 | | | potas- | bns muibo2
-sN) muis | | | 314 | 123 | 38 | 39
62 | 79 | 999 | | | (3M) | Magnesium | | | 41 | 17 | 12 | 18
14
15 | 20 | 289 | | | (1 | sD) muiolsD | | | 4 | 99 | 26 | 73
72 | 21 | 456 | | nillionj | -touba | Specific co
ance (K×
25° C.) | 47 | 104 | 145
82
77
52 | 88.5 | 46.3 | 62. 0
49. 4
69. 7 | 54.0 | 530
110 | | s per r | 6 (° F.) | тителория | 69 | 1 | 60 | 72 | 73 | 80 | 69 | - 56 | | Analyses in parts per million | | ollag) blei Y
etunim | | | | 0.1 | 10 | 20 | .5 | | | aryses | (1991) II | Depth of we | 09 | 52 | 38 | 1 | - | | | 114 | | w] | | Date sampled | Feb. 29, 1940 | | Oct. 22, 1941
Jan. 30, 1940
Feb. 29, 1940 | July 8, 1941 | qo | July 7, 1941 | Aug. 24, 1941 | Jan. 30, 1940
Feb. 29, 1940 | | | | Location | T. 19 S. R. 20 W.:
NEWNWX sec. 18 | SEXNW1 SE | do
SWIANWY sec. 5
NEYSEY sec. 12
NEYNEY sec. 13 | NWKNEK sec. 5 | SEMNE% sec. 4 | SWKSEK sec. 3
NEKSEK sec. 11
SWKNEK sec. 13 | NW4SE4 sec. 12 | SWXNWX sec. 32
SEXSEX sec. 32 | | | | Source | 7 Floyd Johns domestic well | | 89 Otto Gale domestic well
91 R. Skaggs domestic well
92 dodo. | 93 Seep on right bank of Gila | 94 Spring on right bank of Gila | 95 Spring on Gila River bank
96 Spring in Gila River Channel.
97do | 98 Developed spring in canyon | 99 P. Lunt stock well
100 John Pierce domestic well | | 1 | | oN sisylenA | 84 | ŏ | න් කි කි නි | ö | ð | ದಾಹಹ | ã | 901 | ### Chemical character of ground waters in the Gila River Basin above bridge on | Source Location Date sampled | | | | | | | |
---|--------------|---------------------------------------|--|-------------------------------|------|-----|----------| | Luis Deane stock well | Analysis No. | Source | | Date sampled | | 8 1 | em (| | Luis Deane stock well | 101 | Dug well | T. 9 S., R. 32 E.:
NE¼NW¼ sec. 9
T. 8 S. R. 32 E.: | Oct. 21, 1941 | | | 67 | | Luis Deane stock well | | Driven observation welldo | SW14SE14 sec. 34
NE14SW14 sec. 34 | Feb. 26. 1941 | 9 | | | | Luis Deane stock well | 104 | do | SE1/NW1/ sec. 34 | do | | | | | Luis Deane stock well | | R. Davis domestic well | NW48W4 sec. 34 | Jan. 31, 1940 | | | | | W. M. Zumwalt domestic well SW/SE/S sec. 19. Feb. 29, 1940 36 61 | | · · · · · · · · · · · · · · · · · · · | | | 30 | | 63 | | 12 | 108 | do | do | Oct. 31, 1941 | | | 66 | | 12 | | Franklin irrigation district well. | SE4SW4 sec. 19
SE4SW4 sec. 28 | Aug. 7, 1940 | | | 51
58 | | 11 | | J. D. Wilkins domestic well | SE%NW% sec. 29 | Mar. 4, 1940 | 27 | | | | 11 | | J. D. Wilkins stock well | SE1/8E1/2 sec. 30 | July 26, 1940 | | | | | Franklin irrigation district well SW/ANE4 sec. 34 Sept. 10, 1940 92 54 | | | SE48W4 sec. 32 | Oct. 20, 1941 | | | | | Franklin irrigation district well SW/ANE4 sec. 34 Sept. 10, 1940 92 54 | 115 | V. L. Crotts irrigation well | SW14SE14 sec. 33 | Aug. 7, 1940 | 50 | | | | 118 | | | SE¼NW¼ sec. 34 | | I | | | | 120 | | franklin irrigation district well 1 | 8W%NE% sec. 34 | Sept. 10, 1940
Mar. 3 1941 | | | 53
64 | | 122 | 119 | do | do | do | 92 | | 64 | | 122 | 120 | do | do | do | | | | | 124 do | | do | đo | | 1 | | | | 125 | 123 | do | do | Mar. 4.1941 | | | 63 | | 126 | | do | do | do | 92 | | | | 128 | | do | do | Mar. 6, 1941 | | | 63 | | Spring in Rainville Wash | | do | do | | | | 63 | | Spring in Rainville Wash | 128 | do | do | | | | | | 132 do Seep on right bank of Gila River Spring near mouth of Railroad Wash. Seep on Gila River bank | | Spring in Rainville Wash | NW¼NW¼ sec. 32 | Jan. 30, 1940 | | | 04 | | Seep on right bank of Gila River NW1/8W1/8 sec. 34 | 131 | do | do | | | l | | | 135 Seep on Gila River bank D. E. Wilkins unused well NE½NW½ sec. 22 Feb. 29, 1940 18 54 18 18 19 18 19 18 18 18 | | Seen on right bank of Gila River | NW1/SW1/ sec 34 | Aug. 1, 1944 | | | | | 135 Seep on Gila River bank D. E. Wilkins unused well NE½NW½ sec. 22 Feb. 29, 1940 18 54 18 18 19 18 19 18 18 18 | | Spring near mouth of Railroad | SW1/NE1/ sec. 33 | do | | | | | 140 | 125 | Wash. | SEVSWV sec. 20 | đo | | ١, | 72 | | 140 | | D. E. Wilkins unused well | NE'/NW // sec. 32 | | 18 | | | | 140 | 127 | Drilled stock well | T. 7 S., R. 32 E.: | Sept 15 1941 | 1 | 1 | 1 | | 140 | | | T. 8 S., R. 31 E.: | | | | | | 142 J. C. Campbell domestic well | 138 | Franklin irrigation district well | SW¼NE¼ sec. 11 | Aug. 8, 1940 | | | 53 | | 142 J. C. Campbell domestic well | 140 | do | NW14SE14 sec. 11 | Aug. 8, 1940 | 75 | | 51 | | 144 | | | | July 9, 1941 | 4 ' | | | | 144 O. W. Claridge irrigation well NE SE sec. 13 | | | | Jan. 31, 1940 | | | | | Spring on right bank of Gila River NE¼NE¼ sec. 8. | 144 | O. W. Claridge irrigation well | NE¼SE¼ sec. 13 | July 8, 1940 | | | | | Spring on right bank of Gila River NE¼NE¼ sec. 8. | 145 | Z A Woods irrigation well | T. 7 S., R. 31 E.: | Oat 3 1040 | 20 | | | | Spring on right bank of Gila River NE¼NE¼ sec. 8. | 146 | M. M. Casper domestic well | NE¼NW¼ sec. 16 | Mar. 1, 1940 | 27 | | 53 | | Spring on right bank of Gila River NE¼NE¼ sec. 8. | 147 | E. Campbell domestic well | NE½SW¼ sec. 21 | Jan. 31, 1940 | | | | | 156 Spring at mouth of small wash T. 6 S., R. 30 E.; Spring on right bank of Gila River SW/SW/sec, 1 July 11, 1941 1 1 1 1 1 1 1 1 1 | 149 | Spring on left bank of Gila River | SE¼NE¼ sec. 8 | July 10, 1941 | 02 | | 81 | | 156 Spring at mouth of small wash T. 6 S., R. 30 E.; Spring on right bank of Gila River SW/SW/sec, 1 July 11, 1941 1 1 1 1 1 1 1 1 1 | | Spring on right bank of Gila River. | NE¼NE¼ sec. 8 | do | | | 62 | | 156 Spring at mouth of small wash T. 6 S., R. 30 E.; Spring on right bank of Gila River SW/SW/sec, 1 July 11, 1941 1 1 1 1 1 1 1 1 1 | 151 | Driven observation well | SE¼NW¼sec. 7 | Mar. 2, 1941 | 15 | | | | 156 Spring at mouth of small wash T. 6 S., R. 30 E.; Spring on right bank of Gila River Swi/Swi/sec, 1 July 11, 1941 1 1 1 1 1 1 1 1 1 | 152 | J. H. Chapman domestic well | SW1/NW1/ sec. 20 | Jan. 31, 1940 | 36.3 | ;- | | | 156 Spring at mouth of small wash T. 6 S., R. 30 E.; Spring on right bank of Gila River Swi/Swi/sec, 1 July 11, 1941 1 1 1 1 1 1 1 1 1 | 153
154 | Spring in Gila River channel | SW14NE14 sec. 7 | July 10, 1941 | | | 80 | | 156 Spring at mouth of small wash T. 6 S., R. 30 E.; Spring on right bank of Gila River Swi/Swi/sec, 1 July 11, 1941 1 1 1 1 1 1 1 1 1 | | | T. 5 S R. 31 E.: | 0-1 - 10: | | | | | 1 2, 0 17., 18., 00 12 | 155 | Dug wen | T. 6 S., R. 30 E.: | Oct. 7, 1941 | | | | | 1 2, 0 17., 18., 00 12 | | | NE¼SW¼ sec. 1 | July 11, 1941 | | | | | 158 Spring at contact, volcanics-fill S1/2NE1/4 Sec. 11 Sept. 24, 1941 2 70 | 157 | spring on right bank of Glia River. | T. 5 S., R. 30 E.: | ao | | 15 | | | | 158 | Spring at contact, volcanics-fill | S½NE¼ sec. 11 | Sept. 24, 1941 | | . 2 | 70 | $^{^{\}rm 1}$ Samples for analyses 118 to 129 were taken at intervals during a pumping test. # United States Highway 666 south of Clifton, Greenlee County, Ariz. [Analyses in parts per million] | 100 | - | | | | | | | | | | | | · · · · · | | | |---|--------------|----------|------------|-------------|------------|------------|----------|------|------|------|---------------|--------------|--------------|----------|------------| | 222 45 39 436 295 836 15 3.5 24 1,601 2.18 273 78 100 100 88 19 124 471 90 37 4.0 20 622 85 228 48 102 104 90 30 130 512 90 35 37 5.0 634 86 303 48 104 103 36 37 384 74 31 3.1 3.1 8 29 255 106 313 31 3.1 3.1
3.1 | 12 - | Ca) | п | and
sium | nate | (10 | (10) | F) | 103) | (60) | Disso
soli | lved
ds | iness
CO3 | odium | 10. | | 222 45 39 436 295 836 15 3.5 24 1,601 2.18 273 78 100 100 88 19 124 471 90 37 4.0 20 622 85 228 48 102 104 90 30 130 512 90 35 37 5.0 634 86 303 48 104 103 36 37 384 74 31 3.1 3.1 8 29 255 106 313 31 3.1 | 5 g | 8 | in Ca | H S H | g
CO | Ø. | Je (| Je (| 5 | (B) | i o | ot | Cac | tsc | Zi Si | | 222 45 39 436 295 836 15 3.5 24 1,601 2.18 273 78 100 100 88 19 124 471 90 37 4.0 20 622 85 228 48 102 104 90 30 130 512 90 35 37 5.0 634 86 303 48 104 103 36 37 384 74 31 3.1 3.1 8 29 255 106 313 31 3.1 | er er | E I | N. | liu
Val | H. | ate | oric | uric | rate | ate | ts Digital | is p
e-fo | 88
88 | 8 | lys | | 222 45 39 436 295 836 15 3.5 24 1,601 2.18 273 78 100 100 88 19 124 471 90 37 4.0 20 622 85 228 48 102 104 90 30 130 512 90 35 37 5.0 634 86 303 48 104 103 36 37 384 74 31 3.1 3.1 8 29 255 106 313 31 3.1 | 8.968 |)al | Lag | 900 | 310 | TI (| ğ | 7101 | Zita | 30r | E E | Con | rot. | e l | Fig | | 100 | <u> </u> | | - | <u> </u> | | | | | | | | | | | | | 183 | 222 | 45 | 39 | 436 | 295 | 893 | 15 | 3. 5 | 24 | | 1, 601 | | 273 | 78 | 101 | | 183 | 100 | 88 | | 124 | 471 | 99 | 37 | 4.0 | 20 | | 623 | . 85 | 298 | 48 | 102 | | 183 | 104 | 90 | 19
19 | 124 | 494
512 | 99 | 35 | 3.9 | 5.0 | | 634 | . 83 | 303 | 48 | 103 | | 167 | 80.5 | 74 | 1.3 | 117 | 384 | 74 | 31 | 3.1 | | | 489 | . 67 | 190 | 57 | 105 | | 130 | | | | | 36E
01 | | | } | | | | | 1 . | | | | 130 | 194 | | | | 392 | , | 246 | | | | | | | | 108 | | 130 | 88 | | 25 | 100 | 272 | 153 | 1117 | 1.9 | 1.0 | | 610 | | 310 | 43 | 109 | | 130 | 300 | | | | 602 | 850 | 125 | 4.6 | . 5 | | | | 278 | | 111 | | 141 | 130 | | | | 61.4 | 60 | 44 | 4.6 | 90 | | | | 120 | | 112 | | 141 | 400 | | | | 349
349 | | 480 | 3.1 | 1.0 | | | | | | 113 | | 126 | 1 360 | | | | 280 | 1,305 | 225 | | | | | | 300 | | 115 | | 115 | | | 1 | | 331 | | | 2.0 | | | ı | | 1 | | 116 | | 115 | 117 | 95
86 | 18 | 160 | 480
467 | 185 | 43 | | | | 722 | .98 | 289 | 55 | 117 | | 115 | 1 115 | 86 | 18 | 157 | 473 | 181 | 38 | | | | 713 | .97 | 289 | 54 | 119 | | 115 | 115 | 86 | 18 | 152 | 468 | 175 | 38 | | | | 700 | .95 | 289 | 53 | 121 | | 117 89 20 183 471 188 39 721 .98 304 52 122 119 86 19 164 473 199 38 736 1.00 324 50 122 121 94 23 154 478 205 41 736 1.00 324 50 128 201 32 35 389 603 376 131 1,200 1.71 224 79 13 398 26 48 847 504 953 490 2.8 1.5 2,600 3.56 262 88 131 267.3 36 40 563 570 615 255 4.6 .0 1,790 2.43 254 83 133 88.6 79 38 63 417 83 40 1.8 1.2 501 | 115 | 86 | | 151 | 468 | | 37 | | | | 696 | .95 | 289 | 53 | 122 | | 117 89 20 183 471 188 39 721 .98 304 52 122 119 86 19 164 473 199 38 736 1.00 324 50 122 121 94 23 154 478 205 41 736 1.00 324 50 128 201 32 35 389 603 376 131 1,200 1.71 224 79 13 398 26 48 847 504 953 490 2.8 1.5 2,600 3.56 262 88 131 267.3 36 40 563 570 615 255 4.6 .0 1,790 2.43 254 83 133 88.6 79 38 63 417 83 40 1.8 1.2 501 | 113 | 86 | 19 | 151 | 466
473 | 179
186 | 37
60 | | | | 702
753 | 1.95 | 293
310 | 53
53 | 123 | | 117 89 20 183 471 188 39 721 .98 304 52 122 119 86 19 164 473 199 38 736 1.00 324 50 122 121 94 23 154 478 205 41 736 1.00 324 50 128 201 32 35 389 603 376 131 1,200 1.71 224 79 13 398 26 48 847 504 953 490 2.8 1.5 2,600 3.56 262 88 131 267.3 36 40 563 570 615 255 4.6 .0 1,790 2.43 254 83 133 88.6 79 38 63 417 83 40 1.8 1.2 501 | 115 | 88 | 19 | 156 | 473 | 187 | 39 | | | | 722 | . 98 | 298 | 53 | 125 | | 277 36 40 563 570 615 255 4 6 0 1,790 2.43 254 83 13 13 88.6 79 38 63 417 83 40 1.8 1.2 511 .69 353 28 13 140 103 33 182 361 359 80 .9 5.0 941 1.28 393 50 13 250 270 136 42.2 20 7.2 68 198 42 11 .8 5.3 252 .34 80 65 137 154 130 29 195 490 307 104 1,006 1.37 444 49 138 133 103 23 176 427 247 85 1.6 4.0 850 1.16 352 52 133 72 80 | | , | | | | 188 | 3 | | | | 721 | . 98 | | 1 | 126 | | 277 36 40 563 570 615 255 4 6 0 1,790 2.43 254 83 13 13 88.6 79 38 63 417 83 40 1.8 1.2 511 .69 353 28 13 140 103 33 182 361 359 80 .9 5.0 941 1.28 393 50 13 250 270 136 42.2 20 7.2 68 198 42 11 .8 5.3 252 .34 80 65 137 154 130 29 195 490 307 104 1,006 1.37 444 49 138 133 103 23 176 427 247 85 1.6 4.0 850 1.16 352 52 133 72 80 | 1119 | 92 | 19 | 164
150 | 473
474 | 197 | 38 | | | | 739 | 1.01 | 324 | 50 | 127
128 | | 277 36 40 563 570 615 255 4 6 0 1,790 2.43 254 83 13 13 88.6 79 38 63 417 83 40 1.8 1.2 511 .69 353 28 13 140 103 33 182 361 359 80 .9 5.0 941 1.28 393 50 13 250 270 136 42.2 20 7.2 68 198 42 11 .8 5.3 252 .34 80 65 137 154 130 29 195 490 307 104 1,006 1.37 444 49 138 133 103 23 176 427 247 85 1.6 4.0 850 1.16 352 52 133 72 80 | 121 | 94 | 23 | 154 | 478 | 205 | 41 | | | | 752 | 1.02 | 329 | 50 | 129 | | 277 36 40 563 570 615 255 4 6 0 1,790 2.43 254 83 13 13 88.6 79 38 63 417 83 40 1.8 1.2 511 .69 353 28 13 140 103 33 182 361 359 80 .9 5.0 941 1.28 393 50 13 250 270 136 42.2 20 7.2 68 198 42 11 .8 5.3 252 .34 80 65 137 154 130 29 195 490 307 104 1,006 1.37 444 49 138 133 103 23 176 427 247 85 1.6 4.0 850 1.16 352 52 133 72 80 | 398 | 26 | 48 | | 504 | 953 | 490 | 2.8 | 1.5 | | 2,620 | 3. 56 | 262 | 88 | 131 | | 140 103 33 182 361 359 80 .9 5.0 941 1.28 393 50 138 42.2 20 7.2 68 198 42 11 .8 5.3 252 .34 80 65 137 154 130 29 195 490 307 104 1,006 1.37 444 49 133 133 103 23 176 427 247 85 1.6 4.0 850 1.16 352 52 13 72 80 17 63 282 99 52 450 .61 270
34 144 68.6 64 13 72 270 91 35 1.1 1.0 410 .56 213 42 141 78 2288 150 55 2.0 1.4 1 | | | | 563 | | 615 | 255 | 4.6 | .0 | | | 2. 43 | 254 | 83 | 132 | | 140 103 33 182 361 359 80 .9 5.0 941 1.28 393 50 138 42.2 20 7.2 68 198 42 11 .8 5.3 252 .34 80 65 137 154 130 29 195 490 307 104 1,006 1.37 444 49 133 133 103 23 176 427 247 85 1.6 4.0 850 1.16 352 52 13 72 80 17 63 282 99 52 450 .61 270 34 144 68.6 64 13 72 270 91 35 1.1 1.0 410 .56 213 42 141 78 2288 150 55 2.0 1.4 1 | 66.3 | 73 | 16 | 49
63 | 330
417 | 46
83 | 23 | 1.3 | 1.2 | | 371 | . 50 | 248
353 | 30 | 133 | | 42. 2 20 7. 2 68 198 42 11 .8 5. 3 | 1 | 1 | | 1 | l | ! | | Į. | i i | | | 1 | i | i | | | 42. 2 20 7. 2 68 198 42 11 .8 5. 3 | 250 | 103 | 33 | 182 | 1, 762 | 359 | 79 | | | | 941 | 1. 28 | 270 | 50 | 135 | | 78 | 4 | 20 | 7. 2 | 68 | l | 1 | [| 1 | 1 | | 252 | 1 | 1 | 65 | 137 | | 78 | 154 | 130 | 29 | 195 | 490 | 307 | 104 | | | | 1,006 | 1.37 | 444 | 49 | 138 | | 78 | 133 | 103 | 23 | 176 | 427
282 | 247 | 85
52 | 1.6 | 4.0 | | 850
450 | 1.16 | 352 | 52
34 | 139 | | 78 | 68.6 | | 13 | 72 | 270 | 91 | 35 | 1.1 | 1.0 | | 410 | . 56 | 213 | 42 | 141 | | 54 56 14 42 248 53 22 | 78 | | | | 238 | 150 | 55 | 2.0 | 1.4 | | | | 142 | | 142 | | 54 56 14 42 248 53 22 | 192 | | | | 486 | 340 | 184 | | | | | | 405 | | 143 | | 67. 0 48 12 90 281 81 34 1.0 .6 405 .55 169 54 151 63.3 45 14 79 267 71 34 .1 1.4 376 .51 170 50 155 51. 0 36 33 24 205 66 26 1.1 1.2 288 .39 225 19 156 75. 9 87 33 34 372 81 24 .6 2.5 445 .61 353 17 156 55. 8 24 7.4 94 229 58 29 1.6 1.2 328 .45 90 69 156 49. 7 16 5.7 91 196 53 29 1.4 .8 294 .40 63 76 15 | F4 | ER. | 14 | 49 | 248 | 53 | 20 | 1 | | | 300 | 49 | 107 | 39 | 1 | | 67. 0 48 12 90 281 81 34 1.0 .6 405 .55 169 54 151 63.3 45 14 79 267 71 34 .1 1.4 376 .51 170 50 155 51. 0 36 33 24 205 66 26 1.1 1.2 288 .39 225 19 156 75. 9 87 33 34 372 81 24 .6 2.5 445 .61 353 17 156 55. 8 24 7.4 94 229 58 29 1.6 1.2 328 .45 90 69 156 49. 7 16 5.7 91 196 53 29 1.4 .8 294 .40 63 76 15 | .1 41 | | | | 177 | 12 | 18 | 1.2 | 1.4 | | | | 135 | | 146 | | 67. 0 48 12 90 281 81 34 1.0 .6 405 .55 169 54 151 63.3 45 14 79 267 71 34 .1 1.4 376 .51 170 50 155 51. 0 36 33 24 205 66 26 1.1 1.2 288 .39 225 19 156 75. 9 87 33 34 372 81 24 .6 2.5 445 .61 353 17 156 55. 8 24 7.4 94 229 58 29 1.6 1.2 328 .45 90 69 156 49. 7 16 5.7 91 196 53 29 1.4 .8 294 .40 63 76 15 | 58
74 | | | | 273
315 | 16
30 | 26
34 | 1.1 | 3.8 | | | | 202 | | 147 | | 67. 0 48 12 90 281 81 34 1.0 .6 405 .55 169 54 151 63.3 45 14 79 267 71 34 .1 1.4 376 .51 170 50 155 51. 0 36 33 24 205 66 26 1.1 1.2 288 .39 225 19 156 75. 9 87 33 34 372 81 24 .6 2.5 445 .61 353 17 156 55. 8 24 7.4 94 229 58 29 1.6 1.2 328 .45 90 69 156 49. 7 16 5.7 91 196 53 29 1.4 .8 294 .40 63 76 15 | 62.6 | | 22 | 40 | 284 | 70 | 29 | 1.3 | 1.6 | | 374 | . 51 | 265 | 25 | 149 | | 75. 9 87 33 34 372 81 24 .6 2.5 445 .61 353 17 150 55.8 24 7.4 94 229 58 29 1.6 1.2 328 .45 90 69 151 40.7 16 5.7 91 196 53 29 1.4 .8 294 .40 63 76 15 | .1 | 1 | ľ | i . | 1 | 1 | 1 | 1 | 1 | | ł | i | ł | 1. | 1 | | 75. 9 87 33 34 372 81 24 .6 2.5 445 .61 353 17 150 55.8 24 7.4 94 229 58 29 1.6 1.2 328 .45 90 69 151 40.7 16 5.7 91 196 53 29 1.4 .8 294 .40 63 76 15 | 67.0 | 48 | 12 | 90 | 281 | 100 | 34 | 1.0 | 1.6 | | 405 | . 55 | 169 | 54 | 151 | | 75. 9 87 33 34 372 81 24 .6 2.5 445 .61 353 17 150 55.8 24 7.4 94 229 58 29 1.6 1.2 328 .45 90 69 151 40.7 16 5.7 91 196 53 29 1.4 .8 294 .40 63 76 15 | 63.3 | 45 | 14 | 79 | 267 | 71 | 34 | 1 .1 | 1,4 | | 376 | . 51 | 170 | 50 | 153 | | 55.8 24 7.4 94 229 58 29 1.6 1.2 328 .45 90 69 15 49.7 16 5.7 91 196 53 29 1.4 .8 294 .40 63 76 15 | 51.0 | 36 | 33 | 24 | 205 | 66 | 26 | 1.1 | 1.2 | | 288 | .39 | j | 19 | J | | | 1 | 1 | 1 | Į . | Į. | 1 | 1 | 1 | 1 | | ì | 1 | 1 | } | 155 | | 47.0 55 22 15 290 10 7.0 .4 2.5 255 .35 228 13 158 | 55.8
49.7 | 24
16 | 7.4
5.7 | 91 | 196 | 58
53 | 29
29 | 1.6 | 1.2 | | 328
294 | .40 | | | 156
157 | | | 47.0 | 55 | 22 | 15 | 290 | 10 | 7.0 | .4 | 2.5 | | 255 | .35 | 228 | 13 | 158 | Chemical character of the water of Gila River between the bridge on United States Highway 666 south of Clifton, Ariz., and the mouth of Bonita & Creek near Solomonsville, Ariz. | | Percent sodium n- | | 0 | | 0 | | 0 | | 0 | | 24 50 | | 42 48 | | |----------------------|--|--|----------------|--|----------------|---|----------------|--|----------------|---|---------------|--|---------------------|---| | Hardness as
CaCOs | Non-
carbon-
ate | | | | | | | | | | | | | | | 1 | Total | | 182 | | 167 | | 021 | | 176 | | 208 | | 220 | | | Dissolved solids | Tons
per
scre-
foot | | 0.43 | | .43 | | 4. | | 4. | | .62 | | 8 | | | Dissolv | Parts
per mil-
lion | | 314 | | 315 | | 322 | | 322 | | 453 | | 4 9 4 | | | | Borate
(BO ₂) | | | | | | 0.8 | | | | | | | | | Ę | #65
#65 | Ariz. | 98 | | 25 | | %
% | Ariz. | 84 | | 130 | | 142 | Rivers | | | Sulfate
(804) | Clifton, | 54 | , Ariz. | 92 | Ariz. | 55 | Clifton, | 88 | Ariz.1 | 97 | Ariz. | 44 | and Gils | | | bonste
(HCOs) | , 666 near | 244 | ar Clifton | 240 | r Clifton, | 242 | , 666, пеаг | 242 | Clifton, | 221 | Clifton, | 217 | Francisco | | godium | and po-
tassium
(Na+K) | s Highwa, | 52 | Springs, ne | 57 | 1/2 mile below Gillard Hot Springs, near Clifton, Ariz. | 65 | 9 Highwa | 26 | River near | 96 | mile below San Francisco River near Clifton, Ariz. | 94 | from San | | | Stum
(Mg) | ted State | 13 | ard Hot | 12 | rd Hot S | ** | ited State | 15 | Francisco | 14 | Francisco | 17 | of waters | | | Ga) | e on Uni | 87 | bove Gill | 47 | low Gilla | 45 | e on Un | 45 | ow San | 23 | ow San] | 09 | e mirine | | Specific | ance
(KX10 ^s
at 25° C.) | 1 mile below bridge on United States Highway 666 near Clifton, Ariz. | 53.1 | 200 yards above Gillard Hot Springs, near Clifton, Aria. | 52.4 | ½ mile be | 54.4 | miles below bridge on United States Highway 666, near Clifton, Ariz. | 53.4 | ½ mile below San Francisco River near Clifton, Ariz.1 | 80.8 | 1 mile bel | 86.4 | incomplet | | Mean
dis- | charge
(second-
feet) | 1 mile l | 101 | | | | | 5 miles | | | | | | ACRITS O | | | Date sampled | | Nov. 18, 1940. | - | Nov. 18, 1940 | | Nov. 18, 1940 | 1 Sample collected near bank: not representative because of incomplete miting of waters from San Francisco and Gila Rivers. | | | No. | | 189 | | 160 | | 191 | | 162 | | 163 | | 164 | 1 Ray | Chemical character of the water of San Francisco River and its tributaries and of Eagle and Bonita Creeks 444 22383 48 242773 48243 Per-cent so-dium Non-car-bonate 88888 Hardness as CaCO3 1000 12 01 228822 **82824** 3843 Total 22828 222222 23 228 8288 191 5.23. 2.28.25. Dissolved solids Tons per acre-foot 0.46 0.44 .35 448 28.828.93 88288 83888 Parts per mil-lion 341 302 348 318 721 697 535 434 428 633 673 178 178 5882 256 Borate (BO₁) 5 ထက်သော 2000 -0.4 Ni-trate (NO₂) 0.2 2.02.1 21.25 Fluo-ride (F) 60.27 œ. 28204 1.1 0.4 œ Chlo-31200 23 122227 320 308 147 22222 88228 San Francisco River at gaging station at Clifton, Ariz. 1221 នននដដ 828888 82828 24258 8 27 Sul-fate San Francisco River 3 miles above Clifton, Ariz. San Francisco River 2 miles above Clifton, Ariz. Bicar-bonate (HCO₃) 212 213 214 218 200 201 202 196 196 223 213 211 191 217 218 190 222 [Analyses in parts per million] Sodium and po-tassium (Na+K) 888 8 37 **2**4866 85228 **48558 4%25** 6.4 7.8 7.8 Mag-ne-sium (Mg) 2222 48726 16 242 5125 13 22828 58223 88289 Cal-cium (Ca) 20 **& 4** 434 22288 -----86 94 91 16 86 11 1 ----18 Iron (Fe) ö Silica (SiO₂) 4 8884 Specific conduct-ance (KX10° at 25° C.) 56.2 56.1 56.1 63.7 63.7 134 130 97.9 124 77.6 73.7 116 126 99.5 216 49.6 64.4 Dis-charge (second-(feet) 60.3 57.6 126 90.7 258 19.3 705 70.1 638687 ន្តន្តន្ទន 139 Sept. 24-29 * June 21-30, 1944 * Sept. 25-29 * Dec. 6. Aug. 11, 1941...... Aug. 1 Nov. 1 June 21–28, 1943 1 See footnotes at end of table. Date sampled Aug. 3. Jan. 10, 1944 16. 28. 29. 28, 1940. 3, 1941. 1, 1944. 1940 1943 1944 1944 Oct. 29, 1 Aug. 11, June 15, Jan. 10, 1 Aug. 1... Nov. 1... Nov. 15 Nov. 27 Aug. An-alysis No. 52555 82128 82188 82188 88888 88865 88 2222884 Chemical character of the water of San Francisco River and its tributaries and of Eagle and Bonita Creeks—Continued | | Per- | cent
so-
dium | | 57 | | প্ল | | | | | | 8 | 22 | |----------------------------|----------------------|---|---|----------------|---|---------------|--|--------------|--------------------------------------|---------------|--|------|----------------------------------| | | | Non-
car-
bonate | | 121 | | \$ | | | | | | 0 | 00 | | | Hardness as
CaCOs | Total | | 88 | | 3 | | | | Ì | | 194 | 961 | | | Dissolved solids | Tons
per
scre-
foot | | 1.01 | | 0. 47 | | | | | | 0.42 | 84 | | | | Parts
per
mil-
lion | | 742 | | 344 | | | | | | 306 | 315
298 | | | | Borate
(BO ₁) | | 0.1 | | 69. | | | | | | 0.5 | e. | | | Ę | trate
(NO ₃) | | | | | | | | 0.5 | | 0.1 | 6.9 | | | | ride
(F) | i | 8.0 | | | | | | | | 0.6 | φ.κο | | | į | 5
5
5
5
5
5
5
7 | | 330 | , si | 88 | | 23 | | 32 | l, Ariz. | 88. | នៃង | | | 7 | fate
(SO ₄) | , Ariz. | 32 | ton, Ar
| 22 | żi. | 1, 730 | | 826 | Morenc | 8.1 | 8.5 | | i more | ř | bonate
(HCO ₃) | ır Clifton | 304 | near Clif | 227 | lifton, Ar | (9) | ton, Ariz. | ω | nt, near | 258 | 250 | | thousand and so the social | Sodium | and po-
tassium
(Na+K) | San Francisco River at mouth, near Clifton, Ariz. | 174 | Blue River above Juan Miller Creek, near Clifton, Ariz. | # | Chase Creek 2.5 miles above Clifton, Ariz. | | Chase Creek at mouth, Clifton, Ariz. | | Sagle Creek at Phelps Dodge pumping plant, near Morenci, Ariz. | 31 | 888 | | | Mag- | sium
(Mg) | ver at n | 18 | an Mil | 8 | 2.5 mile | | ek at m | ಜ | odge pu | 21 | នន | | | 7 | - (S)
(S) | cisco R | 98 | bove Ju | 61 | Creek | | ase Cre | 175 | helps D | £ | 33 | | | | Iron
(Fe) | an Fran | | River a | | Chase | 6.0 | 5 | 7.9 | ek at P | 0.08 | 2.2 | | | | Silica
(SiO ₃) | 32 | | Blue | | | | | | agle Cr | 47 | 23 | | | Specific | conduct-
ance
(KX10 s
at 25° C.) | | 137 | | 64.1 | | 276 | | 193 | A | 47.9 | 45.1 | | | Dis- | charge
(second-
(feet) | | 88 | | 3.3 | | | | 0.02 | | | | | | | Date sampled | | Nov. 18, 1940. | | June 25, 1944 | | Aug. 1, 1944 | | Aug. 11, 1941 | | | Oct. 28-31 6
Feb. 21-29, 1944 | | | | alysis
No. | | 192 | | 193 | | 194 | | 195 | | 196 | 861 | | - | 86 | | æ | } | for | w | Percent sodiu | 25 | 28.82 | 28 28 28 | 92 | 7 | • | |---|-------------------|------------------|-------------------|--|--|------------------|---------------------------------|---------------------------|--|--|-----------|------------------------------------|---------------| | - | 06 | | 71 | | mont | 886 | Total hardme
so CaCO: | 255 | 28 82 | 95
164
164 | 201 | 254 | 281 | | | 28 | | 127 | | rd the | Dissolved solids | Tons per
tool-stage | 0.85 | 1.69 | 1.71
1.85
1.85 | 8. | .36 | .41 | | - | 16 | | - 61 | 944. | z., a | Diss | Parts per
noillim | 622 | 1, 224
1, 252
1, 242 | 1, 260
1, 357
1, 325 | 99 | 283 | 288 | | - | <u>.</u> | | 0 | 10, 11 | Ari | (| Borate (BOa) | 0.6 | œ.o.r. | 0.8 | | | -: | | | 119 | | 139 | Total acidity as H₃SO₄, 256 parts per million. Acid to methyl orange. Maximum concentration for period Oct. 1, 1943, to Apr. 10, 1944. Minimum concentration for period Oct. 1, 1943, to Apr. 10, 1944. | fton, | (1 | ON) stattiN | | | 1.0 | | | | | | 0.1 | | | lon.
1943, t
1943, t | of Cli | | Fluoride (F) | | | 12 | 4.3 | 2. 3 | 19. | | | | | | Total acidity as H ₂ SO ₆ , 256 parts per million Acid to methyl orange. Maximum concentration for period Oct. 1, 19 Minimum concentration for period Oct. 1, 19 | south | (| Chloride (Cl | 212 | 470
500
480 | 520
520
4 | - 500
 | 19 | 27 | | | 0.1 | | | parts p
period
period | 999 | | (SOs) stallug | 62 | 174
178
182 | 183
193
195 | 100 | | 88 | | | 25 01 | Ariz. | 7 | O4, 256
ge.
tion for
ion for | hway | | Bicarbonate (HCO ₂) | 88 | 196 | 224 | 212 | 260 | - 382 | | ři. | 17 | Solomonsville, / | 16 | Total acidity as H ₃ SO ₄ ,
Acid to methyl orange.
Maximum concentration
Minimum concentration | tes Hig
Ariz. | Dotas- | bas muibos
FsN) muis | 140 | 5 437
1 448
2 450 | 7 449
9 494
6 442 | 174 | &
& | 11 | | i, Ar | 104 | mon | 138 | dity diethy con | state
le, 4
m] | (BM) | Magnesium | 13 | | 4.000 | 15 | 35 | 88 | | oren | *** | Solo | | l aci
to n
imun
imun | ed Sevil | | Calcium (Ca | r | 282 | 848 | 26 | 4 | 26 | | near M | \$ 3 | th near | 5.6 | 7 Acid
8 Max
9 Min | the bridge on United Sta
reek near Solomonsville,
(Analyses in parts per million) | -toubr | Specific cor
ance (K x | 114 | 222
223
223
223 | 23 25 25
25 25 25 25 25 25 25 25 25 25 25 25 25 2 | 115 | 46.5 | 54.1 | | th, | | month | | | e <i>07</i>
· So
n pa | (.Y°); | Теттрегатиге | | 181
170
181 | 8 | | 7 | 74 | | at mor |
ಜ್ಞ | вроте | 14 | | bridg
c near
Jyses i | rs Der | iolleg) bleiY
etunim | A | 9-6 | | ୍ଷ
—: | 9
——— | | | reek | 4 4 | mile | 28 | | the
Tree!
[Ans | (1991) I | Depth of well | | | 8 | _ | | <u> </u> | | Eagle Creek at mouth, near Morenci, Ariz. | | Bonita Creek 1/4 | | | ver between the bridge
Bonita Creek near
[Analyses in | p | Date sample | Nov. 18, 1940 | do
do | May 22, 1944
Nov. 18, 1940
do | -do | Nov. 19, 1940 | ф | | | 21.3 | Ä | 0 25.0 | period June 15 to Sept. 30, 1943.
Period June 15 to Sept. 30, 1943.
Fear ended Sept. 30, 1944.
Fear ended Sept. 30, 1944.
ded Sept. 30, 1944. | rs near Gila Ri | | Location | GE1, R. 29 E. | 8 8 | do
do
NWKNWK sec. 27 | | . 6 S., R. 28 E.:
NEXNEY sec. 2 | SWKSWK sec. 2 | | ŀ | 35 | | 01 | od June
od June
ended
ended
Sept. | l wate | | | T. 5 | NEW
Ge | op
Op
VMN | op | T.68
NE | SW | | | 200 Nov. 18, 1940 | | 202 Nov. 19, 1940 | Maximum concentration for period June 15 to Sept. 38 Minimum concentration for period June 15 to Sept. 39 Maximum concentration for year ended Sept. 30, 1944. Minimum concentration for year ended Sept. 30, 1944. Weighted average for year ended Sept. 30, 1944. | Chemical character of ground waters near Gila River between the bridge on United States Highway 666 south of Clifton, Ariz., and the mouth of
Bonita Creek near Solomonsville, Ariz.
[Analyses in parts per million] | | Source | Seepage in Gila River bed | Spring at Gillard Hot Springs.
Seep at Gillard Hot Springs
Spring at Gillard Hot Springs | Well at Gillard Hot Springs. | | | | | 1 | ଜନ | | ଷ | | Ö | | oM sizylanA | 83 | ង្គីន្គីន្គី | 888 | 210 | 211 | 212 | #### Chemical character of ground waters in the drainage basins of San | Analysis No. | Source | Location | Date sampled | Depth of well (feet) | Yield (gallons per
minute) | Temperature (° F.) | |--|---|--|--|----------------------|-------------------------------|--| | 213
214
215
216
217
218 | Seep at Clifton Hot Springsdododododododo | T. 4 S., R. 30 E.: NW¼SE¼ sec. 30 do do do do NE¼SE¼ sec. 30 | Oct. 29, 1940doAug. 11, 1941doJan. 10, 1944Aug. 11, 1941 | 22 | | 120
104
100
105
110
120 | | 219
220
221
222 | do
do
do
Phelps Dodge Corp. Clifton
well. | do
do
NE¼NW¼ sec. 30 | June 15, 1943
Aug. 1, 1944
Nov. 1
Aug. 11, 1941 | 22
79
79
90 | | | | 223
224
225
226
227 | do
dododo | do | July 21, 28, 1943
Aug. 4, 11, 18, 25
Sept. 1, 8, 15, 22, 29
Oct. 6
Oct. 13 | | | | | 228
229
230
231
232 | do
do
dodo | do
do
dodo | Oct. 20 | | | | | 233
234
235
236
237 | do
do
dodo | do
do
dodo | Dec. 8 | | | | | 238
239
240
241 | dodododo | do
do
NE¼ sec. 31 | Jan. 19
Jan. 26
Feb. 9
Aug. 11, 1941 | | | | | 242
243
244 | Seepage from tailings dump,
new Phelps Dodge mill.
Spring in bed of Chase Creek
Drainage from abandoned cop- | T. 4 S., R. 29 E.:
Sec. 8 | May 9, 1942
Nov. 1, 1944 | | 15 | | | 245
246 | per minedo Phelps Dodge Corp. well at | T. 4 S., R. 28 E.:
Sec. 9 | Nov. 27, 1943
July 27 | | 127 | | | 247 | Eagle Creek pumping station. | do | - | | | | | 248
249
250 | do | do | Aug. 4, 11, 18, 25
Sept. 1, 8, 15, 22, 29
Oct. 6
Oct. 13 | | | | | 251
252
253
254
255 | do
dododo | do
do
do | Oct. 20
Oct. 27
Nov. 3
Nov. 17
Dec. 1 | | | | | 256
257
258
259 | do
dodo | do
do
dodo | Dec. 8
Dec. 15
Dec. 29
Jan. 5, 1944 | | | | | 260
261
262
263 | do
dodo | do
dodo
do | Jan. 12
Jan. 19
Jan. 26
Feb. 9 | | | | I Includes 142 parts per million potassium (K). Includes 58 parts per million silica (SiO₂) and 0.19 part per million iron (Fe). Includes 74 parts per million silica (SiO₂) and 0.55 part per million iron (Fe). Includes 57 parts per million silica (SiO₂) and 0.16 part per million iron (Fe). Includes 55 parts per million silica (SiO₂) and 0.16 part per million iron (Fe). Includes 51 parts per million silica (SiO₂) and 0.16 part per million iron (Fe). Includes 37 parts per million potassium (K). Includes 42 parts per million silica (SiO₂) and 0.16 part per million iron (Fe). Francisco River and Eagle Creek, Greenlee County, Ariz. [Analyses in parts per million] | | | | , | | [Anal | yses in p | ar is pi | er mini | OH | | | | | | |--|-------------------|----------------|------------------------------|---------------------------------|------------------|--------------------------------------|------------------------------|----------------------------|--------------------------|--|----------------------------------|----------------------------|------------------------|--| | Specific conductance
(K x 10 b at 25° C.) | | (S) | potas-
·K) |
Bicarbonate (HCO ₃) | | | | | | Disso
sol | olved
ids | Ses. | ជ | | | at 28 | Ca) | Magnesium (Mg) | and 1
(Na+1 | te (F | िं | (G | (F) | (203) | (°) | -tiu | acre- | Total hardness | Percent sodium | ė. | | fic oc | 1 | esiur | H H | bona | S) e | ide (| | te () | e (B | peri | pera | har | nt sc | rsis l | | Speci
(K x | Calcium (Ca) | /agn | Sodium | 3icar | Sulfate (SO4) | Chloride (CI) | Fluoride | Nitrate (NO ₃) | Borate (BO5) | Parts per mil-
lion | Tons per a | Potal | Perce | Analysis No. | | | | | | - | | | | | | | | | | | | 1, 520
1, 520 | 767
782 | 37
43 | 2, 540 | 111
136 | 110 | 5, 230
5, 280 | 4.3
4.1
5.0 | | | 8, 740
8, 880 | 11. 9
12. 1 | 2, 066
2, 128 | 73
72 | 213
214
215 | | 1,500
1,300 | 754
619 | 41
38 | 2, 570
2, 620
2, 212 | 129
152 | 138
178
68 | 5, 280
4, 470 | 5. 0
3. 6 | | | 8, 940
7, 490 | 12. 2
10. 2 | 2, 128
2, 050
1, 701 | 74
74 | 215
216 | | 1, 650
1, 445 | 860
711 | 41 | 2, 212
1 2, 810
2, 426 | 109
126 | 153
75 | 5, 800
5, 000 | 3. 0
4. 0 | 7. 5
4. 0 | 4.0 | 29, 790
8, 330 | 13. 3
12. 5 | 2, 310
1, 972 | 70
73 | 216
217
218 | | 1, 580 | 750 | 33 | 2, 600 | 128 | 120 | 1 | 4.0 | 4.0 | | 8, 830 | 12.0 | 2,007 | 74 | 219 | | 918
1, 180 | 355 | 17 | 3 1, 670 | 168 | 99 | 5, 26 0
3, 030 | 4. 1 | 1.0 | 2. 5 | 45,320 | 7. 24 | 956 | 77 | 220
221
222 | | 311 | 145 | 13 | 583 | 181 | 46 | 1,050 | 1.8 | 2.0 | | 1,930 | 2. 62 | 415 | 75 | | | 342
502 | 133
231 | 9. 2
24 | 564
763
1, 353 | 197
132 | 34
50 | 990
1,540 | 1.0 | 1.0
.5
.5 | 1.0
2.0 | 1,829
52,730
55,260 | 2. 49
3. 71
7. 15 | 370
675 | 77
71 | 223
224
225 | | 943
856
649 | 574
465
317 | 45
38
23 | 1,353
1,310
1,030 | 141
121
190 | 67
59
50 | 1, 540
3, 100
2, 830
2, 070 | .9
.9 | 1.0
1.0 | 2.0
2.0
1.0
1.0 | 4, 760
3, 590 | 7. 15
6. 47
4. 88 | 1,618
1,320
886 | 65
68
72 | 226
226
227 | | 559 | 258 | 19 | 891 | 204 | 48 | 1.730 | 8 | 1.0 | 1.5 | 3 050 | 4 15 | 722 | 73 | | | 537
531
475 | 237
231
199 | 18
16
14 | 865
869
781 | 205
205
210 | 44
45
44 | 1,650
1,640 | 1.3
1.3
1.3 | .5 | 1.0
1.0
1.0 | 2, 920
2, 900
2, 580
2, 350 | 3. 97
3. 94
3. 51
3. 20 | 666
642
554 | 7 4
75
75 | 228
229
230
231 | | 425
412 | 185
175 | 13
12 | 781
706
692 | 207
207 | 44 42 | 1, 440
1, 300
1, 260 | | 1.0 | | 2, 350 | 3. 20 | 515
486 | 75
76 | 232 | | 470
430 | 204
184 | 17
17 | 754
7689 | 202
208 | 44
44 | 1, 420
1, 420
1, 300
1, 160 | 1.1
1.0 | .5 | .6
1,5
1,2 | 2, 280
2, 540
3 2, 380
10 2,160 | 3, 45
3, 24
2, 94 | 579 | 74
71
71 | 234
235 | | 391
433 | 168
189 | 16
14 | 9 626
712 | 209
210 | 43
41 | 11.320 | 1, 0 | 1.0 | 1. 2 | 2,160
2,380
2,390 | 2. 94
3. 24
3. 25 | 529
486
529 | 75 | 233
234
235
236
237
238 | | 439
391 | 194
170 | 16
13 | 708
633 | 208
208 | 40
43 | 1,330
1,160 | .9 | 1.0 | .4 | | 2.88 | 550
478 | 74
74 | | | 395
855 | 170 | 13 | 624 | 206
7.0 | 40
9, 330 | 1,150 | 1.0 | 1, 0 | . 6 | 2, 120
2, 100
(11) | 2. 86 | 478 | 74 | 239
240
241 | | 193 | 402 | 17 | 36 | 34 | 1,027 | 38 | | | | 1,537 | 2, 09 | 1.073 | 7 | 242 | | 87.0 | 133 | 26 | 26 | 205 | 299 | 8.0 | 1.4 | 2. 0 | .0 | 596 | . 81 | 439 | 11 | 243 | | 111 | 165 | 43 . | 28 | 40 | 565 | 10 | 4.1 | 5.0 | . 5 | 840 | 1.14 | 589 | 9 | 244 | | 110
56. 0 | 42 | 16 | 58 | 202
255 | 29 | 25
36 | 2.0 | 1.0 | .2 | 310 | .42 | 171 | 42 | 245
246 | | | 72 | 10 | 00 | 200 | 29 | 30 | 2.0 | 1.0 | . 2 | 310 | . 72 | *** | * | | | 58. 2
52. 6
48. 0 | 34
35
40 | 13
14 | 80
63 | 257
247 | 26
19 | 46
37
31 | 3. 6
2. 4 | . 5
. 4 | .5 | 12 378
12 341 | .51
.46
.36 | 138
145 | 56
4 9 | 247
248
249
250 | | 50.3 | 40
40 | 16
16 | 44
51 | 241
248 | 15
18 | 31
34 | 2. 4
2. 0
2. 0 | .8
1.5 | .5
.5 | 268
285 | . 39 | 166
166 | 37
40 | 249
250 | | 51. 1
50. 8 | 40
40 | 16
16 | 53
49 | 251
251 | 18
17 | 36
33 | 2.0
1.6 | .5 | .5 | 289
280 | .39 | 166
166 | 41
39 | 251
252
253
254 | | 52. 6
53. 5
57. 2 | 39
40
40 | 15
16
15 | 58
55
63 | 254
257
261 | 18
17
19 | 36
37
42 | 2. 4
2. 0
2. 4 | .3
.2
.3 | .5
.5
.3 | 294
294
310 | .40
.40
.42 | 159
166
162 | 44
42
46 | 254
255 | | 54.7
52.1
56.3 | 40
43 | 15
15
17 | 60 | 261
254 | 18
16 | 39
36 | | l | .3 | 303
287 | .41 | 162
178 | 45
37 | 256
257 | | 56.3
54.6 | 40
39 | 14
14
14 | 48
18 65
15 66 | 260
260 | 20
19 | 42
41 | 2, 0
2, 0
2, 4
2, 4 | .3
.2
.2
.2 | .3
.1
.1 | 14 353
16 352 | .48 | 158
155 | 46
46 | 258 | | 54. 6
55. 1 | 40
40 | 15
14 | 61
62 | 262
260 | 19
20 | 42
41 | | | - - | 306
305 | .42 | 162
158 | 45
46 | 259
260
261 | | 56. 4
56. 6 | 40
40
39 | 14
14
14 | 66
67 | 260
260
260 | 20
20
21 | 43
42 | 2. 2
2. 4 | .2
.1
.1 | .3 | 313
314 | .43 | 158
155 | 48
48 | 261
262
26 3 | | 9 Inclus | | | er million | | | | | | | - | | | | | [•] Includes 35 parts per million potassium (K). 10 Includes 39 parts per million silica (SiO₂) and 0.19 part per million iron (Fe). 11 Sample contained 4,230 parts per million copper (Cu). 12 Includes 48 parts per million silica (SiO₂) and 0.04 part per million iron (Fe). 13 Includes 3.2 parts per million solica (SiO₂) and 0.07 part per million iron (Fe). 14 Includes 3.0 parts per million solica (SiO₂) and 0.07 part per million iron (Fe). 15 Includes 3.0 parts per million solica (SiO₂) and 0.06 part per million iron (Fe). 16 Includes 42 parts per million silica (SiO₂) and 0.06 part per million iron (Fe). ### Chemical character of waters of San Simon Creek as | Analysis No. | Date sampled | Mean
dis-
charge
(second-
feet) | Specific onductance (K x 10° at 25° C.) | Sili-
ca
(SiO2) | Iron
(Fe) | Cal-
sium
(Ca) | Mag-
ne-
sium
(Mg) | Sodium
and po-
tassium
(Na+K) | Bicar-
bonate
(HCO ₁) | |--------------|------------------|---|---|-----------------------|--------------|----------------------|-----------------------------|--|---| | 264 | July 15-16, 1942 | 12.0 | 122 | 22 | 0. 14 | 48 | 12 | 189 | 228 | | 265 | | 138 | 114 | 38 | .11 | 50 | 10 | 175 | 227 | | 266 | | 333 | 107 | 36 | .21 | 40 | 8.3 | 180 | 200 | | 267 | | 299 | 119 | 34 | .05 | 43 | 10 | 201 | 215 | | 268 | | 45.0 | 147 | 39 | .24 | 56 | 10 | 249 | 256 | | 269 | | 1,706 | 81.3 | 28 | .16 | 20 | 3.6 | 153 | 133 | #### shown by analyses of Gila River at Safford, Ariz.1 | No. | D | Garl. | Chla | Tales o | NT | D. | Disso | lved s | olids | Hard
as Ca | | Per- | |--|------------------|--|--|--|--|-----------------------------------|--|--|--|---------------------------------------|-----------------------------|----------------------------------| | Analysis l | Date sampled | Sul-
fate
(SO ₄) | ride
(Cl) | Fluo-
ride
(F) | Ni-
trate
(NO ₃) | Bo-
rate
(BO ₃) | Parts
per
mil-
lion | Tons
per
acre-
foot | Tons
per
day | Total | Non-
car-
bon-
ate | cent
sodi-
um | | 264
265
266
267
268
269 | July 15-16, 1942 | 105
110
130
149
174
127 | 198
172
154
170
230
100 | 1.6
1.2
1.9
1.5
1.3
1.7 | 1.0
2.0
5.0
5.0
3.0
4.9 | 1.8
.8
2.0
1.4 | 689
670
654
719
889
503 | 0. 94
. 91
. 89
. 98
1. 21
. 68 | 22
351
588
580
108
2, 320 | 170
166
134
148
181
65 | 0 0 0 0 | 71
70
75
74
75
82 | ¹ Flow in the Gila River at the time these samples were taken was 75 to 95 percent from San Simon Creek. ## Chemical character of ground waters in the drainage | An-
alysis
No. | Source | Location | Date sampled | Depth
of well
(feet) | Yield
(gal-
lons
per
min-
ute) | Tem-
pera-
ture
(°F.) | |----------------------|---|--|--|----------------------------|---|--------------------------------| | 270 | Robert Page stock well | T. 14 S., R. 32 E.:
SE¼NW¼ sec. 30
T. 15 S., R. 32 E.:
Sec. 27
SE¼ sec. 27 | Dec. 9, 1940 | 560 | | 78 | | 271
272 | Domestic well | Sec. 27 | Apr. 5, 1941 | 4 | | | | 273 | San Simon Cienaga | | ao | | | | | 274 | do | T. 13 S., R. 31 E.: | Sept. 15, 1941 | | | | | 275
276 | Pat Neil unused well
E. A. Olsen stock well | SE¼ sec. 10 | May 1, 1941
Nov. 20, 1940 | | | 75
80 | | 277 | •Thomas Nelson stock well | NE\\\SW\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | do | 840 | | | | 278
279 | J. K. Burch irrigation well.
John M. Cameron domestic well.
| NE¼SE¼ sec. 20
NE¼NW¼ sec. 28 | do | 615
763 | | 81
82 | | 280 | C. A. Metzger stock well | SE1/SW1/4 sec. 28 | do | 625 | | 79 | | 281
282 | R. S. Andrews domestic well
Domestic well, San Simon town | SE¼SW¼ sec. 28
SW¼ sec. 30
SW¼SW¼ sec. 30 | Apr. 29, 1941 | 700
850 | | 84
82 | | - 1 | site. | | | [| | 02 | | 283
284 | San Simon grade school well
Mrs. L. Sullivan unused well | SW¼ sec. 30 | May 3, 1941
Dec. 1, 1940 | 700
72 | | 61 | | 285 | A. A. Waldie irrigation well. | NE¼SW¼ sec. 31 | May 1, 1941 | 884 | | 83 | | 286 | A. A. Waldie domestic well | SW1/8E1/ sec. 31 | May 1, 1941
do
Nov. 20, 1940 | 850 | | 80 | | 287
288 | J. E. Davis stock well
J. E. Davis irrigation well | NE¼SW¼ sec. 31
SW¼SE¼ sec. 31
NE¼NE¼ sec. 33
NE¼ sec. 33
SW¼NE¼ sec. 33 | do | 590
648 | | 79
77 | | 289 | Mrs. Flossy Buchannan domestic well. | SW¼NE¼ sec. 33 | Apr. 29, 1941 | 663 | | 80 | | 290 | A. R. Herrell domestic well | SE14 sec. 33 | do | 662 | | 80 | | 291
292 | Ed Centner domestic well
Phil Ebsen domestic well | SW1/4 sec. 33
SE1/4 sec. 33 | Apr. 30, 1941 | 730
700 | 10 | 80
80 | | 292 | J. L. Schad domestic well | | do | 600 | | 79 | | 294 | Charles Record domestic well | 00
SE¼NW¼ sec. 34
T.14 S., R. 31 E.:
SW¼ sec. 3.
SW¼NE¼ sec. 4.
NE¼ sec. 4.
SW¼ sec. 4.
SW¼ sec. 4. | Apr. 29, 1941 | 600 | 6 | 78 | | 295 | Harrington irrigation well | SW1/4 sec. 3 | Apr. 30, 1941 | 714 | | 79 | | 296
297 | Stella E. Ebsen irrigation well——
Ceorge Ebsen irrigation well—— | SW1/1NE1/1 sec. 4
NE1/1 sec. 4 | Apr. 29, 1941 | 760
730 | | 80
80 | | 298 | Mr. L. Sullivan domestic well | SW1/4 sec. 4 | Apr. 29, 1941
Apr. 30, 1941
Dec. 11, 1940 | 825 | | 76 | | 299
300 | John Riggs unused well J. R. Summerville stock well | NFL/NFL/ sec 10 | | 760
738 | | 84
79 | | 301 | I. L. Fulcher irrigation well | SW14 sec. 10 | do | 690 | 60 | 67 | | 302
303 | Davis McDonald domestic well
Dr. Scott stock well | SW14NE14 sec. 10
NW14 sec. 10 | May 2, 1941
May 1, 1941 | 600 | | 79
74 | | 304 | A. B. Hulsey irrigation well | NE¼NE¼ sec. 10
SW¼ sec. 10
SW¼NE¼ sec. 10
NW¼ sec. 10
SW¼ sec. 14 | Dec. 9, 1940 | 700 | | 81 | | 305
306 | M. H. Barnes irrigation well | do | Dec. 11, 1940
Dec. 9, 1940 | 690
705 | 60
82 | 80
81 | | 307 | I. L. Fulcher domestic well | NW1/4NW1/4 sec. 15 | May 1, 1941 | 822 | 30 | 78 | | 308
309 | Harry Birlenbach domestic well_
Unused well | do
NW¼NW¼ sec. 15
SE¼ sec. 16
NW¼NW¼ sec. 17 | Dec. 11, 1940 | 2,000 | 62 | 88
84 | | 310 | CCC camp domestic well- | SE¼NE¼ sec. 21 | May 1, 1941 | 730 | 13 | 85 | | 311 | A. W. Cooper domestic well | SE\/NE\/\ sec. 21
SW\/NW\/\ sec. 22
SW\/SE\/\ sec. 22
SE\/\SE\/\ sec. 23
SE\/\ sec. 24 | do | 700
770 | 6 | 83
83 | | $\frac{312}{313}$ | M. Calloway irrigation well
L. T. Davis unused well | SE1/SE1/ sec. 23 | Dec. 11, 1940 | 620 | | 80 | | 314 | Stanley irrigation well | SE¼ sec. 24 | May 2, 1941 | 630
615 | | 77 | | 315
316 | J. L. Freeman domestic well——Claytor irrigation wells (composite of 2). | SW ¼ sec. 25
NW¼NW¼ sec. 26 | Dec. 11, 1940
May 1, 1941 | 010 | | 78
82 | | 317 | R. B. Murchison domestic well | T. 13 S., R. 30 E.:
SE¼NW¼ sec. 3 | Nov. 19, 1940 | 860 | | 85 | | 318 | do.1 | dodo | Nov. 19, 1940
Apr. 29, 1941
Nov. 19, 1940 | 860
900 | | 92 | | 319
320 | T. P. Garrett stock well | 60
SE¼NE¼ sec. 9
SW¼NW¼ sec. 11
SW¼NE¼ sec. 13 | do | 950 | | 90 | | 321 | M. G. Ebsen stock well | SW¼NE¼ sec. 13 | do | 760
900 | | 81 | | 322
323 | S. M. Morse stock well
T. P. Garrett domestic well | SE¼SE¼ sec. 14
SE¼NE¼ sec. 15
SE¼NE¼ sec. 25 | May 1, 1941
Apr. 29, 1941 | 975 | 10 | 90
95 | | 324 | Mrs. Lizzie Lewis unused well | SE¼NE¼ sec. 25 | Nov. 19, 1940
Apr. 29, 1941 | 880
880 | | 65
65 | | 325
326 | Mrs. Lizzie Lewis domestic well. | SW¼NE¼ sec. 25 | Nov. 19, 1940 | 880 | 4 | 87 | | 327 | J. R. Hall domestic well | SE 1 NE 1 sec. 25 | May 1, 1941
Dec. 10, 1940
Dec. 11, 1940
Nov. 19, 1940 | 900 | 4 | 84 | | 328
329 | Wollston domestic well
Melvis Smith domestic well | SE¼sec. 25 | Dec. 10, 1940
Dec. 11, 1940 | 68
88 | | 64 | | 330 | Lawhan stock well | SE 4 Sec. 25 | Nov. 19, 1940 | 960 | | 104 | | 331 | Stock well | SW14 sec. 6 | May 2, 1941 | 835 | | 80 | | 332
333 | A. R. Spikes irrigation well | NE¼NW¼ sec. 18
SE¼SW¼ sec. 24 | Nov. 19, 1940 | 860
960 | 24 | 78
105 | | - 000 | 11. 10. Spikes migamon wen | DE17401174 SOU. #1 | 1.07. 10, 1010 | 1 000 | | | ¹ After treatment to remove fluoride. ## basin of San Simon Creek, Cochise County, Ariz. | Spe-
cific
con- | Cal- | Mag- | Sodium | Bicar- | | Chlo- | Fluo- | Ni- | Diss
sol | olved
ids | Total
hard- | Per- | An- | |---|----------------------|----------------------|------------------------------|-------------------------------|-------------------------------|----------------------|----------------------|-----------------------------|------------------------------|------------------------------|---------------------------------|---------------------|---------------------| | duct-
ance
(K×
10 ⁵ at
25° C.) | cium
(Ca) | ne-
sium
(Mg) | and po-
tassium
(Na+K) | bonate
(HCO ₃) | Sulfate
(SO ₄) | ride
(Cl) | ride
(F) | trate
(NO ₃) | Parts
per
mil-
lion | Tons
per
acre-
foot | ness
as
CaCO ₃ | cent
so-
dium | alysis
No. | | 37. 6 | 45 | 8.3 | 27 | 153 | 64 | 5 | 1.7 | 0.8 | 227 | 0.31 | 147 | 28 | 270 | | 60. 5
144 | | | | | | | | | | | | | 271
272 | | 92. 0
86. 4 | | | | 324 | 202 | 17 | | | | | 270 | | 273
274 | | 38. 9
43. 0 | 35
5 0 | 6. 1
4. 8 | 46
95 | 135
184 | 81
65 | 7. 0
5 | 2.6
4.6 | .5 | 245
271 | . 33
. 37 | 112
32 | 47
87 | 275
276 | | 39. 2
41. 1 | 5. 0
37
50 | 6. 6
7. 4 | 41
32 | 143
152 | 72
80 | 6
10 | 2. 5
1. 0 | 2. 0
1. 5 | 237
257 | .32 | 120
155 | 43
31 | 276
277
278 | | 39. 2
42. 2 | 48
44
7.0 | 10
8.3 | 24
38 | 156
151 | 66
77 | 9
11 | . 9
1. 7 | 1.0
2.0 | 236
256 | . 32 | 161
144 | 24
36 | 279
280 | | 42. 1
42. 1 | 7. 0
14 | 4. 4
4. 8 | 83
76 | 142
135 | 76
85 | 6. 0
6. 0 | 4. 8
4. 4 | | 251
257 | . 34
. 35 | 36
55 | 84
75 | 281
282 | | 40. 9
94. 9 | 14
30 | 4.8
11 | 73
186 | 135
174 | 85
232 | 7.0
89 | 1.8
4.7 | 2.8 | 253
642 | .34
.87 | 55
120 | 75
77 | 283
284 | | 42. 5
43. 1 | 14
16 | 4. 4
4. 4
7. 0 | 77
75 | 130
142 | 88
80 | 8. 0
7. 0 | 4. 5
4. 5 | | 260
257 | . 35 | 53
58 | 76
74 | 285
286 | | 41. 4
41. 2
42. 3 | 50
50
52 | 7. 0
6. 6
7. 9 | 32
34
28 | 154
154
150 | 80
78
81 | 8
9
9.0 | 1.7
1.3 | 1.4 | 255
256
253 | .35
.35
.34 | 154
152
162 | 31
33
27 | 287
288
289 | | 42.1 | 50 | 8.7 | 32 | 155 | 81
69 | 9.0 | 2.0 |
 | 259
229 | . 35 | 161
99 | 30 | 290
291 | | 38. 9
41. 8
42. 4 | 28
50
53 | 7. 0
8. 7
9. 2 | 48
33
31 | 138
148
152 | 90
92 | 6. 0
9. 0
9. 0 | 3.4
1.6
1.8 | | 265
271 | .31
.36
.37 | 161
170 | 51
31
28 | 291
292
293 | | 43.1 | 44 | 7. 4 | 42 | 150 | 86 | 9.0 | 2.3 | | 265
252 | . 36 | 140 | 39
30 | 29 ₄ 295 | | 41. 4
38. 3
40. 9 | 48
32
44 | 8.7
8.3
8.3 | 31
38
34 | 150
133
148 | 82
68
81 | 7. 0
7. 0
7. 0 | 1.8
2.8
1.3 | | 222
249 | . 34
. 30
. 34 | 156
114
144 | 42
34 | 296
297 | | 36. 7
34. 9 | 22
13 | 4.8
3.5 | 58
68 | 127
140 | 72
43 | 7. 0
7. 0
7. 0 | 4.8
9.2 | .8 | 232
214 | . 32
. 29 | 75
47 | 63
76 | 298
299 | | 42. 0
38. 8 | 52
33 | 9. 2
7. 0 | 27
44 | 153
135 | 81
76 | 9. 0
9. 0 | 1.6
2.0 | | 255
238 | $.35 \\ .32$ | 168
111 | 26
47 | 300
301 | | 42. 3
36. 6 | 54
18 | 9. 2
4. 8 | 22
60 | 148
124 | 77
72
74 | 11
5. 0
10 | 1.4 | 1.0 | 248
225
254 | .34 $.31$ $.35$ | 173
65
162 | 22
67
28 | 302
303 | | 41. 9
40. 8
39. 7 | 54
52 | 6. 6
7. 4
6. 1 | 29
29
30 | 159
155 | 77 | 9
8 | 1.0
.8
.9 | 1. 8
1. 4 | 253
242 | . 34 | 160
150 | 28
30 | 304
305
306 | | 39. 7
39. 8
42. 3 | 50
38
22 | 10
5. 2 | 35
71 | 153
141
139 | 71
75
98 | 7. 0
5. 0 | 3. 6
3. 2 | 1.4 | 238
272 | . 33
. 32
. 37 | 136
76 | 36
67 | 307
308 | | 35, 5
39, 5 | 11
26 | 3. 1
7. 9 | 69
49 | 130
140 | 56
72 | 5
6. 0 | 6. 1
2. 5 | 2. 0 | 216
232 | . 29 | 40
97 | 79
53 | 309
310 | | 42. 3
43. 9 | 42
50 | 8. 3
9. 6
7. 9 | 39
31
27 | 155
153 | 82
89
75 | 5. 0
7. 0 | 1.6
1.2 | | 254
263 | . 35
. 36 | 139
164 | 38
29 | $\frac{311}{312}$ | | 41. 0
40. 5 | 52
46 | 7.9 | 32 | 158
148 | 79 | 6
5. 0 | 1. 4
2. 4 | 1. 0 | 248
245 | . 34 | 162
147 | 26
32 | 313
314 | | 41. 5
43. 4 | 54
52 | 7. 9
7. 4 | 27
36 | 154
150 | 79
84 | 8
18 | 1. 7
1. 4 | 2.0 | 256
273 | . 35
. 37 | 167
160 | 26
33 | 315
316 | | 51. 0
64. 7 | 4. 5
16 | 6.6
12 | 114
114 | 136
149 | 94
146 | 17
35 | 20
5. 2 | 1.0 | 324
401 | . 44
. 55 | 38
89 | 87
74 | 317
318 | | 46. 5
44. 2 | 3.0
4.5 | 3. 9
4. 4 | 105
97 | 127
170 | 86
58 | 14
8 | 14
11 | . 5
1. 5 | 289
268 | . 55
. 39
. 36 | 23
29 | 91
88 | 319
320 | | 39.0
43.8 | 4. 0
8. 5 | 5. 2
4. 8 | 87
88 | 151
147 | 66
78 |
7
9.0 | 6. 2
7. 0 | 1.0 | 250
267 | . 34 | 31
41 | 86
82 | 321
322 | | 49. 1
64. 2
66. 0 | 6. 0
4. 0
5. 5 | 5. 2
6. 1
4. 4 | 100
161
157 | 164
279
340 | 71
43
42 | 10
7
10 | 12
38
32 | 2. 5 | 285
400
389 | . 39
. 54
. 53 | 36
35
32 | 86
91
91 | 323
324
325 | | 41. 4
39. 8 | 8. 0
9. 0 | 4. 4
3. 5 | 84
81 | 128
125 | 86
78 | 9.0 | 4. 7
6. 4 | 1.4 | 260
249 | .35 | 38
37 | 83
83 | 326
327 | | 142
106
58.9 | 92
64
4. 0 | 24
12
6.6 | 201
145
128 | 266
276
239 | 385
188
80 | 93
56
13 | 5. 2
6. 0
6. 8 | 2. 7
9. 1
. 2 | 934
616
355 | 1. 27
. 84
. 48 | 328
209
37 | 57
60
88 | 328
329
330 | | 38. 7
34, 6 | 11
14 | 3. 9
5. 2 | 68
58 | 102
133 | 62
45 | 28
15 | 1, 5 | | 224
205 | . 30
. 28 | 43
56 | 77
69 | 331
332 | | 55.8 | 2.0 | 4.8 | 128 | 248 | 67 | 11 | 2. 3
5. 5 | . 2 | 340 | . 46 | 25 | 92 | 333 | Chemical character of ground waters in the drainage basin of San Simon Creek, Graham County, Ariz. | unip | Percent so | 92 | 83 | 88 | 8 | 96 | 22 | | |---------------------|---|---|-----------------------------|-----|-----------------------|----------------------|-----------------------------------|-----------------------------------| | sseni
sO | onad latoT
OaO aa | 69 | 170 | 9 | 84 | 37 | 62 | 202 | | lved | Tons per
tool-9198 | 1.93 | 1.55 | .92 | 1.15 | 1.41 | 1.55 | | | Dissolved
solids | Parts per
noillim . | 1, 419 | 1,140 | 673 | 843 | 1,038 | 1,140 | | | (101) | Vitrate (V | 5.0 | 2.0 | 5.3 | | | | | | (A | Fluoride (| 8.5 | 3.6 | 1.7 | 7.7 | 6.6 | | | | (to | Oploride (| 245
195 | 225 | 100 | 150 | 168 | 455 | 172 | | (10 | Sulfate (S | 366
301 | 395 | 153 | 244 | 313 | 167 | | | etan
(s | Bicarbo
(HCO | 526
205 | 229 | 318 | 258 | 331 | 173 | 139 | | nui: | Sodium
potasa
(Na+K) | 516
334 | 348 | 244 | 588 | 375 | 412 | | | mni | Magnes
(Mg) | 7.6 | 83 | 5.9 | 5.9 | 4.8 | 5.2 | | | (8) | Calcium (| 12 | 32 | 6.5 | 9.5 | 2.0 | 16 | | | con- | Specific
Special
Special
Special | 226
159 | 182 | | 149 | 172 | 808 | 155 | | erui | втэд шэТ
(.Ч°) | 79
106 | 38 | -67 | 1 | | | | | snolla
(6) | Yield (g
por minu | 300 | | | | | | | | | Depth of
(feet) | 1,925 | 1 | | 250 | | | 150 | | | Date sampled | Sept. 7,1941
Sept. 3,1941
Nov. 10,1941 | 4, 1941 | op | Jan. 20, 1942 | qo | Mar. 1, 1940 | Mar. 27, 1942 | | | Location | T. 10 S., R. 29 E.:
SEVSEV sec. 23
NWMN WA sec. 31 | R. 29 E.:
\W\1/4 sec. 13 | SEX | WXNWX sec. 23 | SE¼ sec. 31 | T. 9 S., R. 27 E.:
NE¼ sec. 11 | T. 8 S., R. 29 E.:
SE½ sec. 22 | | | Source | Fault spring
Whitlock No. 1 oil test
well, flowing. | Seely Ranch well | | W. E. Ellsworth stock | Double L Ranch stock | | | | .01 | I sisylanA | 334 | 337 | 330 | 340 | 341 | 342 | 343 | footnotes at end of table. See Chemical character of the water of Gila River between the mouth of Bonita Creek, near Solomonsville, Ariz., and the Southern Pacific Railroad bridge at Calva, Ariz. 223424 422234 484 2328827 Per-cent sodi-um Hardness as CaCOs **4**280805 22422 888828 842 &848±40 Non-car-bon-ate Total 52583827 223 223 223 203 2542 232 235 235 204 177 Tons per acre-foot 288247 25.25 25.28 25.28 25.28 25.28 88.88888 28228 46 45 Dissolved solids Parts per mil-lion 523 523 571 570 570 570 570 570 570 243 618 750 454 288888 312 251 410 4.0 Bo-rate (BO₃) ---------------..... -...... -------Nitrate NO3) ----------1.35 --1.6 -----Fluo-ride (F) 185 41 220 18 262 17 322888 82223 **12** Solomonsville, Ariz. Solomonsville, Ariz. 40 31.4.1 30 30 30 Sul-fate (SO₄) 923344 24444288 2421888 24 35 River near Solomonsville, Ariz. Bicar-bonate (HCO₃) [Analyses in parts per million] 28823222 223 212 212 201 201 214 237 237 199 167 133 172 247 134 198 198 209 204 204 near Dam, near Sodium and po-tassium (Na+K) Bonita Creek. 25248 22298 372 81583158 Jose Mag-ne-sium (Mg) 18 8.3 7.88.7 477455g 44555 2222 222 River above San Cal-cium (Ca) 25.22 488888 **\$48** Gila River below 67 71 73 73 73 73 73 73 Gila 0.14 --0.10 99 Iron (Fe) ---------Sili-ca (SiO₂) --------------------Gila ----------------30 33 Specific con-ductance ance (K×10° (at 25° (C.) 33 85.5 87.2 81.3 78.8 91.9 102 97.3 89.0 65.1 101 42.6 116 38.4 38.4 31.2 74.3 43.75 23 4 2 2 2 2 2 515 95.0 Mean dis-charge (second-feet) 151 1, 110 1, 110 1, 960 1, 680 1, 680 88834 84115848 Oct. 7, 1940 Oct. 17 Oct. 29 Nov. 16 Nov. 27 Dec. 6 Oct. 16. Nov. 4, 11, 25, 29. 28 Sept. 7 Sept. 11, 12 Oct. 2, 4, 7, 11, 14, 22, 26, Date sampled ----Anal-ysis No. 359 360 361 361 363 364 365 367 367 345 345 345 348 350 350 369 351 352 353 354 355 355 Chemical character of the water of Gila River between the mouth of Bonita Creek, near Solomonsville, Ariz., and the Southern Parific Railroad bridge at Calva, Ariz.—Continued | | er. | cent
sodi-
um | | 39
36
46
30
30
30
30
30
30
30
30
30
30
30
30
30 | | 57 | | 57
80
38
65 | 39
47
49
57 | 88 | |------------------------------|----------------------|--|--|--|---|---------------|------------------------------|---|--|---| | | | Non- sc
car- u
bon-
ate | | 8228888 | | 63 | | 0
117
6
14
121 | 0 0 63 52 52 | 0 | | | Hardness as
CaCOs | · | | 144
116
1190
221
182
188 | - | 332 | | 181
318
102
126
377 | 144
172
263
111
158 | 143 | | Ì | | Total | | | | | | | | | | | Dissolved
solids | s Tons
per
acre-
foot | | 0.35
0.35
0.62
0.65
0.65
0.58 | | 5 1.18 | | 2 0.61
9 1.62
6 .21
6 .31
0 1.75 | 6 .35
2 1.51
4 .60 | 5 . 56 | | | | Parts
per
mil-
lion | | 260
194
409
445
402
383 | - | 865 | | 1, 189
1, 189
156
1, 290 | 256
1,112
261
444 | 261 | | | é | . rate
(BO ₃) | | | | | | | 1.0 | . 5 | | | ÿ | trate
(NO ₃) | | 0.8
1.0
1.0
1.5 | | | | 3.6
2.0
1.4
4.4 | 2.1.4.
2.1.5
1.9 | 1.8 | | | | ride
(F) | | 0.3
9
1.1
1.1
1.3 | | | | 2.2.1.09 | 1.1.2.2.3 | 1.2 | | | - | ride
(CI) | Ariz. | 47
34
116
131
118
105 | Ariz. | 283 | | 134
438
14
39
428 | 25 28 28 28 28 28 28 28 28 28 28 28 28 28 | 450
26
86 | | | 7 | fate
(SO ₄) | nsville, | 251
254
358
358 | nsville, | 102 | | 4. 5
190
25
35
209 | 37
160
35
62 | 23
57 | | пошт | ļ | bonate
(HCO ₃) | Solomo | 141
127
192
211
191
199 | r Solome | 327 | , Ariz. | 276
246
117
137
312 | 160
194
244
150 | .183
186 | | Analyses in parts per minori | | and po-
tassium
(Na+K) | Gila River above San Jose Wash near Solomonsville, Ariz. | 30
30
86
85
77
75 | Gila River above San Simon Creek, near Solomonsville, Ariz. | 203 | Gila River at Safford, Ariz. | 325
20
20
36
36 | 302
48
95
95 | 38 | | y see the | | sium
(Mg) | п Јове | 12
9. 3
14. 12
113
113 | limon | 36 | River. | 7.6
29
7.3
9.5
31 | 01 2 2 2 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 | 9.7 | | lama. | 5 | Cium
(Oa) | ove Sa | 88
82
82
83
84
84
85
85
85
85
85
85
85
85
85
85
85
85
85 | San | 96 | Gila | 80
80
29
35
100 | 41
49
66
31
45 | 36 | | | | Fron (Fe) | River ab | 0.30
122
122
123
16 | er abov | | | 0.15
.30
.27
.05 | 115
118
125
125 | . 21 | | | | Sill-
ca
(SiO ₂) | Gila 1 | | Gila Riv | | | 36 | 37
25
36 | 37 | | | Spe-
cific | duct-
ance
(KX10 ⁵
at 25°
C.) | | 45.4
33.7
72.9
80.2
70.7 | | 154 | | 83
205
26. 0
39. 1
220 | 45.1
62.8
189
42.1
72.1 | 224
39. 4
66. 2 | | | Mean | charge
(second-
feet) | | | | 61 | | 670
31
6,010
1,117
6.3 | 2, 579
358
2. 4
868
123 | 64
2, 166
103 | | | | Date sampled | | Apr. 24, 1941 May 2, 9, 16, 23, 20 June 5, 10, 17, 19 July 16, 23 Aug. 6, 13, 27 Sept. 3, 6, 17, 23 | | June 18, 1940 | | July 30, 1940
June 28–25, 1941 *
Mar. 15–20 to
1940–11 u
June 11–13, 15–20, 1942 ti | Oct. 1-10 1941 13
1941-42 14
May 21-31 1943 15
Sept. 28-30 16
1942-43 17 | July 8, 1944 8
Sept. 26-30 3.
1943-44 7 | | | | Ysis
No. | | 371
372
373
374
375
376 | | 377 | | 378
379
380
381
382 | 383
384
385
386
387 | 388
380
380 | | | ಹಜ್ಞಾಹ | Ì | 9222 | 44844 | 73,466 | | |---------------------------------|---|---------------------------|-------------------------------------|---|--|--| | | 74
94
22
52 | | 0
0
56
64 | 20 08 45
61 48 60 | 030080 | | | | 371
345
142
416 | | 209
267
312
200
237 | 280
141
171
226
290 | 368
272
340
145
371 | | | | 1. 66
1. 52
1. 52
1. 63 | |
0.40
1.43
1.55 | 868.888 | 1.50
1.08
2.23
2.00 | | | | 1, 217
1, 120
238
1, 200 | | 292
683
1, 052
404
537 | 677
276
222
463
705 | 1, 101
796
1, 643
254
1, 470 | | | | 1.5 | | | | 1.0 | | | | 5.0
2.0
4.0 | | | | 12
2.1
5.0 | | | | 0.8 | | 4.1.
9.1.
8.
8. | 20.03 | oc | r, Ariz. | | | 421
390
36
375
114 | | 21
212
338
83
83
152 | 222
44
36
145
230 | 365
265
540
40
475
134 | Glenbar | | | 170
166
42
162 | | 37
81
130
90
85 | 72
72
72
72 | 136
86
234
47
214 | g, near | | er, Ariz. | 362
306
147
443 | Ariz. | 256
276
386
176
211 | 267
215
172
198
279 | 388
300
498
149
472 | l headin | | Gila River near Thatcher, Ariz. | 320
291
35
298 | Gila River at Pima, Ariz. | 32
159
285
72
111 | 152
55
20
89
158 | 279
201
498
40
420 | Gila River above Fort Thomas Consolidated Canal heading, near Glenbar, Ariz. | | River n | 32
33
11
32 | la Rive | 20
26
14
17 | 20
10
13
20 | 27
20
34
111
32 | onsoli | | Gila] | 96
84
39
114 | Ci | 64
74
82
57
67 | 79
40
47
66
83 | 103
76
80
40
96 | mas (| | | | | | | | Fort Tho | | | | | | | | above. | | | 212
196
42.0
205
71.4 | | 53
122
181
72
94 | 123
47
37.5
85.0 | 187
142
279
44. 3
248
83. 9 | la River | | | 3.2
4.0
34.0 | | 29
10
192
72 | 1, 690 | 5.8
13
65.0 | 3 | | | June 18, 1940
Sept. 16, 1943 1.
Sept. 28-30 2.
Nov. 25:18
Oct. 2, 21 19 | | Feb. 4, 1940 | Sept. 4. Sept. 6. Sept. 1, 8. Sept. 10, 11. Sept. 12, 13. | Sept. 14, 15. Oct. 30. Sept. 16, 1943 1. Sept. 28-30, 1943 2. Nov. 25 18. Oct. 2, 21 19. | | | | 391
392
393
394
395 | | 396
397
398
399
400 | 401
403
404
405 | 406
407
408
411
411 | | | | 879751- | 50 | 7 | | | | | | 101010 | | 10.00 5 = 6 | | 0.010.5 | | · · | | | | · · · · | | |----------------------------------|-----------------------------------|---------------------------|-------------------------------------|---|--|--|-------------------|-----------------|------------------------------|--|-------------------|-------------------------------| | | 955
955
119 | | 25
67
50
50 | 44
46
46 | 62
62
76
37
71 | | 98
 | | 36
38
59
59 | | 976 | | | | 22
52 | | 0
0
0
64
64 | 94
94
61 | 26
0
0
0 | | 75 | | 23
0
0 | | 60 | | | | 371
345
142
416 | | 209
267
312
200
237 | 280
141
171
226
290 | 368
272
340
145
371 | | 236 | | 408
140
304
132 | | 384 | | | | 1. 66 | | 0.40
.93
1.43
.55 | 86.8.98 | 1. 50
1. 08
2. 23
2. 00
2. 00 | | 2.68 | | 2. 33 | | 2.54 | | | | 1, 217
1, 120
238
1, 200 | | 292
683
1, 052
404
537 | 677
276
222
463
705 | 1, 101
796
1, 643
254
1, 470 | | 1, 969 | , | 2,126
240
2,170
356 | | 1,871 | | | | 1.5 | | | | 1.0 | | | | 10 | | | | | | 5.0
4.0 | | | | 12
2.1
5.0 | | | | 5.0
2.5
2.0 | | | | | | 0.8 | | 1.0 | .23 | oc | r, Ariz. | | | 8. 4.1 | | | | | | 421
390
36
375
114 | | 21
212
338
83
83
152 | 222
44
145
230 | 365
265
540
40
475
134 | Glenbar | 739 | | 735
30
810
64 | | 360 | | | | 170
166
42
162 | | 37
81
130
85 | 21
21
21
77 | 136
86
234
47
214 | g, near | 370 | | 371
51
392
49 | Ariz. | 297
147 | | | ner, Arız. | 362
306
147
443 | . Ariz. | 256
276
386
176
211 | 267
215
172
198
279 | 388
300
498
472 | Gila River above Fort Thomas Consolidated Canal heading, near Glenbar, Ariz. | 279 | Ariz. | 469
146
342
214 | Gila River at Eden crossing near Eden, | 396
343 | | | dila kiver near i natener, Ariz, | 320
291
35
298 | Gila River at Pima, Ariz. | 32
159
285
72
111 | 152
55
20
89
158 | 279
201
498
40
420 | lated Can | 653 | Glenbar, Ariz. | 647
36
703
87 | crossing 1 | 561
258 | | | iver n | 32
33
32 | a Rive | 12
20
14
17 | 20
12
20
20 | 27
20
34
32
32 | onsolic | | Gila River near | 44
11
41
8.5 | Eden | 37
30 | | | E BIS | 96
84
39
114 | 15 | 64
74
82
57
67 | 79
40
47
83 | 801
80
80
80
80
80
80 | mas C | 32 | a Rive | 38
38
39 | iver a t | 883 | - | | | | | | | | ort Tho | | ΕĒ | | Gila R | | | | | | | | | | above F | | | | | | | | | 212
196
42.0
205
71.4 | | 22
181
27
27
94 | 123
47
37.5
85.0 | 187
142
279
44. 3
248
83. 9 | a River | 330 | | 355
41.3
370
61.4 | | 320
184 | | | | 3.2 | | 29
10
192
72 | 40
690
80.5 | 5.8
13
65.0 | Cil. | | | 1.9 | | 1 | | | | 391 June 18, 1940 | | 386 Feb. 4, 1940 | 401 Sept. 4. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, | 406 Sept. 14, 15. 408 Sept. 16, 1943 t. 409 Sept. 16, 1943 t. 410 Nov. 25 is. 411 Oct. 2, 21 is. | | 412 June 19, 1940 | | 413 Sept. 17, 1943 | | 417 June 19, 1940 | See footnotes at end of table | | 1 | | | 4 | | | | 4. | | 4. 1. 4. 4. | | 4. 4. | l | See footnotes at end of table. Chemical character of the water of Gila River between the mouth of Bonita Creek, near Solomonsville, Ariz., and the Southern Pacific Railroad bridge at Calva, Ariz.—Continued | illion] | |---------| | per n | | parts | | rses in | | [Analy | | | | | | | Per- | cent
sodi-
um | | 72 | 56 | | 7.2 | 25
25
25
25
25 | | 67 | 52 | |-----------------------------|-----------------------|--|--------------------------------|----------------------------|---|----------------------------------|---------------------|---|---------------------------------|-------------------|---------------------------| | | iess as | Non-
car-
bon-
ate | | 514 | 1, 190 | | 0 | 1,900 | | 1,044 | 1, 140 | | | Hardness as
CaCOs | Total | | 842 | 1, 460
138 | | 164 | 1, 402
148
2, 080
143 | | 1, 257 | 1,260 | | | lved | Tons
per
acre-
foot | | 4.81 | 7.75 | | 0.86 | 6.34
8.65
8.65 | | 6.16 | 6.69 | | | Dissolved
solids | Parts
per
mil-
lion | | 3, 540 | 5,700 | | 635 | 4,660
281
6,360 | | 4, 530 | 4,920 | | | ć | BO ₂) | | 8.0 | | | | 5.0 | | 9.0 | 2.0 | | | ž | trate
(NO ₃) | | 3.0 | 2.0 | | | 1.9 | | 2.0 | 2.0 | | İ | Ē | ride
(F) | | 1.9 | 1.2 | | | 1.7 | | 1.5 | 1.6 | | | 770 | (G) | | 1,390 | 2, 390
72 | | 1,850
1,850 | 1, 70
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 | | 1, 970 | 2, 180
49 | | | - | sur-
fate
(SO ₄) | | 672 | 1,120
35 | | 32 | 802
60
1,100
38 | | 608 | 909 | | тотт | D | bonate
(HCO ₃) | st, Ariz. | 401 | 336
209 | nas, Ariz | 378 | 338
150
220
172 | mo, Ariz | 259 | 146
154 | | Analyses in parts per immon | Sodium | and po-
tassium
(Na+K) | Gila River near Ashurst, Ariz. | 066 | 1, 540
81 | Gila River at Fort Thomas, Ariz. | 191 | 1, 180
1, 540
1, 540 | Gila River near Geronimo, Ariz. | 1, 187 | 1,330 | | ly ses III | Mag- | sium
(Mg) | River 1 | 88 | 155
9.2 | iver at | 12 | 114
11
182
9. 2 | iver ne | 901 | 8.7 | | env' | | Carr
Cium
(Ca) | Gila | 196 | 330
40 | Gila R | 46 | 374
41
533
42 | Gila R | 329 | 40 | | | | (Fe) | | | | | | | | | | | | | Sill- | | | | | | | | | | | | Spe-
cific
con- | duct-
ance
(K×10s
at 25°
C.) | | 573 | 891
65.0 | , | 110
658
30. 7 | 700
748.9
748.2
1,000
47.2 | | 732 | 48.3 | | | Mean | charge
(second-
feet) | | 1.4 | 2. | | 81
10
2,300 | 3,490
2.9 | | 6.0 | 7.3 | | | | Date sampled | | Sept. 17, 1943 1Sept. 29.2 | Aug. 7, 1944 ³
Aug. 10-11, 22, 24-25 ⁵ | | | June 29, 1942 12 Out. 2, 1941 9. Sept. 17, 1943 1. Sept. 28-29 2. Aug. 22 8 | | Sept. 17, 1943 1. | May 30, 1944 ** Aug. 22 * | | | | Anal-
ysis
No. | | | 421 | | | 428
429
429
430
431 | | | 434 Ma
435 Au | | Arix. | |-------| | | | = | | F | | 븅 | | ~ | | - | | | | - | | ပ | | 65 | | E | | 8 | | - | | 7 | | - | | - | | ē | | | | R | | œ | | _ | | - | | 9 | | 78 | | · | | Sept. 17, 1942 Sept. 27, Sept | | 88 88 | | 55
69
70
49
67 | | 25.88 | |
--|-------------|------------------------------|--------------|--|--------------|---|--| | Sept. 21, 1944 Sept. 22, 294 Sept. 29 20 | | 928 | | 67
570
8
686
0
85 | | 58
639
664 | | | Sept. 17, 1943 1 | | 830 | | 246
772
116
832
126
258 | | 214
818
824 | Ж. | | Sept. 17, 1943 1 | | 4.18 | | 0.85
3.97
3.97
4.46
4.46
1.30 | | | 30, 1944.
30, 1944.
Ilion of
Ilion of | | Sept. 17, 1943 1 | | 3, 890 | | 2, 920
2, 920
2, 282
3, 280
319
957 | | 3, 010
3, 270 | 1942.
1942.
1943.
1943.
1943.
1943.
to Jan.
to Jan.
per mi | | Sept. 17, 1943 1 | | 2.0 | | 5.0
.4
1.8 | | 5.0 | Sept. 30
Sept. 30, 1942.
J. 1942.
Sept. 30, 5ept. 30, 1943.
J. 1943.
I. 1943.
I. 1943.
I. 1943.
L. 1943. | | Sept. 17, 1943 1 | | 2.0 | | 1.0
1.6
1.0
2.2 | | 2.0 | ended 8
ended 8
Sept. 36
ended 8
ended 8
Sept. 30
d Oct. 30
Na and 4
Is and 4 | | Sept. 17, 1943 1 | | 1.5 | | 0.8
1.4
.9
.8 | | 0. 2
1. 6 | for year
or year
or year
or year
or perio
for perio
for perio
or perio
for of N | | Sept. 17, 1943 1 | | 1,290
1,660
1,660 | | 182
1, 210
44
1, 410
49
316 | | 1, 330
33
1, 460
1, 460
64 | tration
tration
tration
tration
for year
for year
tration
tration
tration
per mill
per mill | | Sept. 17, 1943 1 | | 727 | | 106
500
47
605
42
161 | | 82
486
536 | concen
concen
average
concen
average
concen
concen
64 parts
8 parts | | Sept. 17, 1943 1 | 411 | 253 | Ariz. | 218
246
138
178
176
176 | Ariz. | 190
218
195 | faximum
finimum
feighted
faximum
finimum
finimum
finimum
reludes 7 | | Sept. 17, 1943 1 | o T where t | 818 | er at Bylas, | 139
20 782
20 782
889
246 | er at Calva, | 115
804
899 | | | Sept. 17, 1943 1 | TALVEL OF | | ila Rive | | ila Rive | | | | Sept. 17, 1943 Sept. 27, 1943 Sept. 27, 1944 Sept. 29, 24, 1944 Sept. 29, 24, 1944 Sept. 21, 24, 1944 Sept. 21, 24, 1944 Sept. 21, 25, 24 Sept. 21, 25, 1944 Sept. 21, 25, 1944 Sept. 21, 25, 1944 Sept. 20, 20 | | 302 | Ö | 204
204
33
33
36
69 | 3 | 209
209
210 | | | Sept. 17, 1943 1 | | | | 0.04 | | | K. K. | | Sept. 17, 1943 1 | | | . ! | | | | 1943.
1943.
Illion of
Illion of | | Sept. 17, 1943 1 | | 510
50. 5
628
64. 1 | | | | | ept. 30, 1944. ts per miles mile | | Sept. 17, 1943 1 | | 8.7 | | 144
9.6
20.7
3,013
111 | | 134
4
446
9.0
2, 228 | y 1, to S d Sept. 3 d Sept. 3 d 12 par 1 Sept. 3 d 13.3 par 1 3.0 par 1 6.0 par 2 d Sept. 3 | | 9222222 | | Sept. 17, 1943 1 | | Sept. 3, 1940
Sept. 21-26, 1943 1.
Sept. 27-30 2
May 5, 1944 3.
1943-1944 7. | | Sept. 3, 1940. Sept. 18, 1943. Sept. 29. May 26, 1944. Sept. 6-7, 26, 29.5. | laximum concentration for period Jul. Immum concentration for period Jul. Immum concentration for period Jul. Immum concentration for year ended relimium concentration for year ended for the July Superior Su | | | | 436
437
438
439 | | 044
144
144
144
144
144
144
144
144
144 | | 448
448
449
450 | MAN SUN SUN SUN SUN SUN SUN SUN SUN SUN SU | Changes in the chemical character of the water of Gila River between the mouth of Bonita Creek near Solomonsville, Ariz., and the Southern Pacific Raines in the character of the Water Bailroad bridge at Calva, Ariz. | | Per
cent
sodi-
um | 25 55 55 55 55 55 55 55 55 55 55 55 55 5 | 22226 33336 | |--|---
---|---| | Hardness
as CaCO3 | Non-
car-
bon-
ate | 44444444444444444444444444444444444444 | 591
476
495
521
521
38
38
34 | | Hard
as Cs | Total | 178
171
173
175
175
175
191
191
223
223 | 814
814
820
833
820
833
807
190 | | Dissolved solids | Tons
per
acre-
foot | 0. 72
7. 73
7. 73
7. 73
1. 03
1. 03
7. 42
7. 42
7. 43
7. 43 | | | Dissc | Parts
per
mil-
lion | 529
538
538
557
557
754
1, 204
1, 524
3, 120 | 2, 2, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, | | | Ni-
trate
(NO ₃) | | 2.00 | | | Flu-
oride
(F) | | 11111 | | | Chlo-
ride
(Cl) | 212
220
220
220
220
220
230
230
402
402 | 1, 16
1, 188
1, 129
1, 162
1, 162
1, 163
145
148 | | | Sul-
fate
(SO ₄) | 44 45 55 55 55 55 55 55 55 55 55 55 55 5 | 500
451
426
416
416
42
42
42
41
41 | | | Bicar-
bonate
(HCO ₃) | 149
153
123
168
160
184
401
261
261 | 272
102
78
78
76
206
212
212
210 | | | Sodium
and po-
tassium
(Na+K) | 135
1395
145
145
158
215
215
336
493
851 | 738
709
709
713
713
1103 | | | Mag-
ne-
sium
(Mg) | 116
117
117
119
119
119
119
119
119
119
119 | 8 52 52 52 44 11 11 11 11 11 11 11 11 11 11 11 11 | | **** | Cal-
cium
(Ca) | 24 4 2 2 2 3 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 122
122
130
130
58
59
59 | | Spe- | cific
con-
duct-
ance
(KX10 ^s
at
at
25° C.) | 95
99
99
99
1111
1111
1111
1111
1111
11 | 450
430
420
420
82.1
82.1
83.1 | | in dis-
om pre-
neasur- | Net gain (+) or loss (-) (unad-) justed) | 26-1-1
26-1-1
26-1-1
11 11 0 11 11 11 11 11 11 11 11 11 11 11 | + 1 + 1 | | Change in dis-
charge from pre-
ceding measur- | (second-feet) Inflow (+) or diver- loss (-) sion (-) justed | 0
49-111-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1 | 0 | | | Dis-
charge
(second-
feet) | 1888
1888
1888
1888
1888
1888
1888
188 | 166
163
163
163
163
163 | | | Miles
below
initial
point | 0 ట. ఇ. 44 కి.
గాణా శాశాలు
గాణా శాశాలు
గాణా శాశాలు
గాణా శాశాలు
గాణా శాశాలు
గాణా శాశాలు
గాణా శాశాలు | 51.5
55.5
67.2
7.0
7.0
7.0
7.0 | | | Date sampled and
sampling point | May 20: At gaging station below Bonita Creek— Below Brown wasteway— Below San Jose wasteway— Below San Simon Creek— At Safford, Ariz— At Thatcher, Ariz——— At Pima, Ariz———— At Pima, Ariz———— At Pima, Ariz————— At Pima, Ariz———————————————————————————————————— | At Hinton farm. At Hinton farm. 5 miles below Geronimo 10 miles below Geronimo At Calva, Ariz Sept. 16 x gaing station below H gaing station below Bonlia Creek Above Tidwell Canal | | | Anal-
ysis
No. | 4 455
4 455
4 455
4 455
4 456
4 6
4 6
4 6
4 6
4 6
4 6
4 6
6
6
6
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7 | 462
464
464
465
466
468
468 | | 55 55 55 55 55 55 55 55 55 55 55 55 55 | 53
54
61
65 | 66
77
71
70
70 | 42 83 22 | 22222 | 2228222 | 50
54
57
56
60 | |---|--|--|--|--|--
---| | 38
55
35
102
46 | 55
52
22
23
24
25
25
25
25
25
25
25
25
25
25
25
25
25 | 320
320
322
322 | 94
176
187
156 | 24 34 34 5 7 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 | \$255
\$25
\$25
\$25
\$25
\$25
\$25 | 23 29 24
23 29 24 | | 203
229
210
228
278
228 | 245
276
366
337
370 | 403
313
428
635
531 | 356
408
442
407 | 227
225
225
229
229 | 222
227
221
247
230 | 237
238
245
255
271 | | 22,22,00 | . 79
. 91
1. 35
1. 31 | 1.84
2.17
2.35
2.96
2.79 | 1.52
1.74
1.74
1.64 | 88.20 | 88
88
70
71
72 | . 71
. 87
. 88
1. 04 | | 499
510
549
532
532
532 | 579
668
994
966
1, 211 | 1, 352
1, 598
1, 725
2, 173
2, 048 | 1, 114
1, 276
1, 280
1, 205 | 498
492
492
512 | 503
504
508
518
515
528 | 519
576
641
645
766 | | 25.21.11 | 22005
50055 | 11.12.8 | 44.44.44
0000 | 1.05 | 150. | .H.4.94
2.000
0.000 | | 2.1.1.1.0.1.0.4.0.0.4.0.0.1.0.0.4.0.0.0.0 | 11222 | 22221
21704 | 12.9 | | | | | 165
168
170
178
178
165 | 192
215
322
315
395 | 440
570
570
840
830 | 395
475
440 | 162
155
160
156
156 | 152
152
152
165
160
158 | 170
178
205
202
245 | | 44
46
52
50
51
51 | 55
74
123
118
151 | 170
272
275
352
352 | 147
191
184
168 | 84
84
84
84
84 | 44
45
45
49 | 47
54
63
68
85 | | 202
213
213
230
214 | 231
260
359
349
427 | 474
334
482
384
256 | 319
311
307 | 22
237
239
239 | 237
239
246
246
246
243 | 223
260
264
270
302 | | 113
108
118
121
121
96 | 128
150
238
240
322 | 364
485
490
569
561 | 286
322
311
297 | 105
106
109
109 | 106
107
1111
104
116 | 108
130
151
149
190 | | 13
14
17
16
16 | 388517 | 38
38
58
58
58
58 | 83383 | 17
17
18
18 | 11.
17.
17.
17. | 17
16
16
17
21 | | 6266 | 07 76
104
92
98 | 107
66
114
167
124 | 98
114
126
117 | 82222 | 282122 | 69
72
74
74 | | 88.1
89.8
91.0
97.4
93.2 | 103
118
171
164
208 | 230
275
286
366
346 | 189
220
219
205 | 90.3
91.2
91.0
91.0 | 90.4
91.8
93.2
95.5 | 97.0
104
114
115
131 | | 14.0.7.
1.0.2.8.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4 | 1.1
5.8
1.1
1.1
1.2
1.2 | 0.00 cg | 9.3+
7.1+
3.5- | 3.0+ | 2.9
9.09.
1.84.7
1.84.4
1.84.4
1.84.4
1.84.7 | 10.3+
2.2+
3.6+ | | 37.2-
0 0-
0 0-
- 8.4.8- | 9.7- | 11.9 | 000 | 0.2- | 6.9—
0
47.3—
0
26.1— | 18.3—0 | | 130
78.8
70.6
38.1
11.4 | 11.4
12.5
88.6
12.5 | 16.0
13.1
16.0
19.0
19.3 | 59.1
68.4
75.5
72.0 | 154
157
157
157 | 142
138
129
82.5
86.9
53.0 | 54.7
46.7
48.9 | | 9.3
12.3
14.5
17.5 | 22.23.23.23.23.23.23.23.23.23.23.23.23.2 | 28.33.0
25.7.0
2.4.6
2.2.6 | 44.2
50.2
56.7
67.2 | 2045
2045
2045 | . 55.5
12.3
14.5
18.5
18.5 | 23:12
23:12
23:45
23:45
23:45
23:45
23:45
23:45
23:45
23:45
24:45
25:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45
26:45 | | Sept. 17: Above San Jose DamBelow San Jose wasteway Above Union Canal Below San Simon Creek Above Graham Canal At Safford, Ariz | Sept. 19: At Safford, Ariz. Above Smithville Canal. At Thatcher, Ariz. Above Dodge-Nevada Canal. At Pirna, Ariz. | Sept. 20: At Pima, Ariz | Oct. 9: At Fort ThomasAt Geronino crossingAt Calva, ArizAt Calva, Ariz | Oct. 16: Bonita Creek. Bonita Creek. Above Brown Canal. Below Brown wasteway. Above Tidwell
Canal. Above San Jose Dam. | Oct. 17: Above San Jose Dam Below San Jose wasteway Above Union Canal Below San Simon Creek Above Graham Canal. At Safford, Ariz | Oct. 18: At Safford, Ariz | | 471
473
473
474
475 | 476
477
478
479
480 | 483
484
485
485 | 486
487
489
489 | 490
491
493
494 | 498
498
498
499
500 | 501
503
504
504 | Changes in the chemical character of the water of Gila River between the mouth of Bonita Creek near Solomonsville, Ariz., and the Southern Pacific Railroad bridge at Calva, Ariz.—Continued | | | WA. | TER OF G | ILLA | BASIN | ABUVE | COOLIDGE | DAM | | |------------------------------|--|----------------------------|--|------|--|--|--|--|--------------------------| | | | Per- | cent
sodi-
um | | 28888 | 67 | 68
522
523 | 85 2 4 4 4 4 | 024 | | | Hardness
as Ca COs | | Non-
car-
bon-
ate | | 156
156
156
158 | 287 | 272
884
274
74 | 28 88 85 88 88 88 88 88 88 88 88 88 88 88 | 198 | | | Harc
as Ce | | Total | | 316
337
370
391 | 506
523
523 | 200
235
235
235
235
235
235
235 | 232
232
231
230
230 | 222 | | | lved ds | | Tons
per
acre-
foot | - | 1.62 | 252
252
252
252 | 2. 49. 49. 44. 44. 44. 44. 44. 44. 44. 44 | 47.
67.
47.
47. | .70 | | | Dissolved
solids | | Parts
per
mil-
lion | | . 990
1, 190
1, 211
1, 422 | 1, 773
2, 001
1, 836 | 1,830
544
543
543
543 | 548
558
552
552
555 | 493
518 | | | | ż | trate
(NO ₃) | | 0.000 | 122 | 2.0 | | | | | | F10- | oride
(F) | | | | | | | | | | Chlo | (CI) | | 325
405
540
555 | 258
110
110
110
110 | 740
182
182
183
183 | 182
188
182
182
178
180 | 148 | | | | Sul- | (SO4) | | 119
161
165
221
225 | 308 | 289
4444
84 | 48 48 48 49 49 49 49 49 49 49 49 49 49 49 49 49 | 45
50 | | | | Bicar- | bonate
(HCO ₃) | | 88628
88838
88838 | 328
335
322 | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 888888 | 242 | | Transmit and and an eactment | | Sodium | and po-
tassium
(Na+K) | | 258
324
318
385 | 470
532
485 | 491
122
1119
119 | 222222
222222 | 104 | | or and | Mag-
ne-
sium
(Mg) | | | | 48888 | 984 | 4 71
71
71 | 17
15
16
15
16 | 14 | | | | Cal-
cium
(Ca) | | | 201
202
298 | 127
146
137 | 128
42
43
66
66
66 | 28 28 28 28 28 28 28 28 28 28 28 28 28 2 | 94 | | Commercial | S. | ciffe. | ance
ance
(K×10 ^s
at
25° C.) | | 200
205
243
243 | 330
330
300 | 309
96.6
95.5
95.6 | 97.3
97.3
99.0
99.0 | 89.0 | | | in dis-
om pre-
neasur- | oint
1-feet) | Net
gain
(+) or
loss (-)
(unad-
justed) | | 9.99.4.6
1.00.4.6
1.00.6 | 12.1+
12.6- | . 9-
6. 0-
1. 1-
1- 0-7. | 7.2+
1.8-
13.5+
7.8+ | ; b
; i
; i
; i | | | Change in dis-
charge from pre-
ceding measur- | ing point
(second-feet) | Inflow (+) or diversion (-) | | 4.6-0 | 00 | | 7. 2- | | | | -: | | charge
(second-
feet) | | 32.7
32.7
39.7
44.0 | 25. 5
37. 6
35. 0 | 34.1
130
136
127
120 | 120
1119
108
99. 2
86. 2 | 126 | | | | Miles | below
initial
point | | 28.33.0
442.6
7.70
6.70
6.70
6.70 | 44.2
50.2
56.7 | 67.2
0
22.2
33.7
5.0 | c c.e.214778 | 18.5 | | | | | Date sampled and sampling point | 0761 | Oct. 23: At Pima, Ariz | Oct. 25: At Fort Thomas At Geronimo crossing At Bylss, Aric. | At Calva, Ariz | Above San Jose Dam Nov. 7: Above San Jose Dam Below San Jose wasteway Above Union Canal Below San Simon Creek Above Graham Canal. | ž ` | | | | Anal. | ysis
No. | | 506
508
509
509 | . 511
512
513 | 514
515
516
517
517 | 519
520
521
523
524
524 | 526 | | 27
28
28 | 88888 | 58
61
62 | 82488 | 8888 | 37
36
37 | 78444 | 58
57
56 | |---|--|--|--|---|---|---|--| | 848 | 882234 | 25
76
76 | 28828 | ន្តន្តន | 2388 | 35
35
35
35 | 53 | | 242
246
246 | 240
267
291
295 | 298
319
319
327 | 118
123
123
125 | 143
139
135 | 144
144
152
160 | 166
167
170
175 | 250 | | .74
.76
.86 | | 1. 10
1. 27
1. 26
1. 35 | ន្ទន្ទន្ទន | 4. gg. gg. | 48.88.89 | 8.4.8.4. | 28.83 | | 548
557
630 | 622
689
742
818
823 | 808
932
990
990 | 162
151
169
179
171 | 251
235
243 | 249
246
275 | 288
329
360 | 605
591
602 | | | | | | | | | 0 0 1 | | | | | | | | | 155 | | 162
186
190 | 185
208
225
262
262 | 3888
3888
3888 | 22488 | 324 | 8428 | 8442 | 212 210 208 | | 59
61
72 | 72
83
105
106
109 | 101
133
127
136 | 831718 | 44
38
40 | 4344 | 94 45
55 55 | 52 | | 252
252
272 | 275
289
300
302
301 | 300
304
304
304 | 116
117
117
120 | 139
142
141 | 144
146
150 | 154
185
171 | 216
214
214 | | 125 | 143
165
200
200
200 | 193
230
228
249 | 11
128
17
17 | 98.8 | 88 8 8 8 | 45
64
59
69 | 144
139
138 | | 17
16
18 | 22 22 28
22 23 28 | ដននន | 110
100
110
110 | 11213 | 2224 | 3444 | 16
15
17 | | 888 | 027.28
82.24.28 | 98008 | 888888 | 988 | \$38
\$38
\$4 | 3444 | 66 | | 95.9
96.4
110 | 108
119
140
142 | 141
160
160
169 | 3.05.0
3.1.5
3.1.5
3.1.5
8.1.5 | 41.2
42.3 | 43.6
6.1.6
8.1.8
8.1.8 | 52.0
56.7
59.2
63.7 | 105 | | 1.2+
10.0-
15.5+ | 7.3+
9.6-
10.0+ | 13.99
13.04
10.61 | 39.1+ | 22.0+
53.2- | 41.0+
7.9-
41.2- | 21.7+
0
15.8- | | | 80 %
50 - 2- | 24.4+ | 000 | 30.9 | 91.8 | 0
102.1—
81.8— | 29.7—
0
22.2— | | | 109 | 98.3
130
115 | 4888
888 | 1, 960 | 955
977
832 | 816
857
747
624 | 634
634
596 | 120
113
57.6 | | 25.55
4.65
4.65
5.45
6.03 | 28.33.0
42.6.44
2.0.6.44 | 44.2
50.2
56.7
67.2 | 8.72.12.83
2.23.23
2.23.23 | 3.8
5.0 | 10.0
12.3
14.5
18.5 | 28.55.58
25.45
3.45
3.45
3.45
3.45
3.45
3.45
3.45 | 3.8
5.0
10.0 | | At Thatcher, ArizAbove Dodge-Nevada Canal.
At Pima, Ariz | At Pima, Ariz | At Fort ThomasAt Bylas, ArizAt Calva, ArizAt Calva, Ariz | Feb. 21: At gage near Solomonsville, Ariz. Above San Jose Dam. Above Union Canal. Below San Simon Creek. At Safford, Ariz. | Apr. 23: At gage near Solomonsville, Ariz. Above Tidwell Canal. Below San Jose wasteway | Apr. 24: Below San Jose wasteway Above Union Canal Below San Simon Creek At Safford, Ariz | Apr. 25: At Safford, ArizAt The Bodge. Nevada Canal. At Pima, Ariz | At gage near Solomonsville, Arie. Above Tidwell CanalAbove San Jose Wash | | 230 28 | 233
233
234
234
235
237 | 536
537
539
539 | 540
543
543
544 | 545
546
547 | 548
550
551 | 552
553
554
555 | 556
557
558 | Changes in the chemical character of the water of Gila River between the mouth of Bonita Creek near Solomonsville, Ariz., and the Southern Pacific Railroad bridge at Calva, Ariz.—Continued | 1 | | 43 | 3± a | | | | | | _ | |-----------------------------------|--|--------------|--|--|---|---|--|--|---| | | | - 8 8 | sodi- | 57
53
59
59 | | | 884 |
8328 | | | | Hardness
as CaCO3 | | Non-car-
bon-ate | 83
83
83
83 | 86
90
104 | 95
106
90 | 170
863
1,000 | 1,080
733
694
755 | 32 | | | Har
as C | | Total | 243
243
279
307 | 313
351
438 | 453
424
496 | 527
1, 160
1, 292 | $\begin{array}{c} 1,382\\ 1,017\\ 924\\ 965 \end{array}$ | 214 | | | lved | | Tons
per
acre-
foot | .88
.98
.95
71.1 | 1.08 | 1.76
1.79
2.14
3.06 | 5.55
5.05
5.05
5.05
5.05
5.05
5.05
5.05 | 5.94
4.11
4.11 | .62 | | | Dissolved
solids | | Parts
per
mil-
lion | 610
630
700
858 | 797
931
1,330 | 1, 290
1, 320
1, 570
2, 250 | 1,860
3,860
4,120 | 3, 360
3, 410
3, 020
3, 030 | 457 | | | | ż | trate
(NO ₃) | 00000 | 1.0
1.0
6.9 | 7.2.4.0
0.1.0 | ம்லம் | 5.5.5.5 | 1.0 | | | | Flu- | oride
(F) | 100000
000000 | 2.1.2
2.2
2.2 | 9 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 | 9999
884 | 12:52 | 2.0 | | | | Cblo- | (CI) | 88 83 85 51
88 83 85 51 | 258
310
450 | 422
450
530
800 | 670
1,670
1,810 | 1,920
1,440
1,280
1,360 | 132 | | | | Sul- | fate
(SO ₄) | 85
78
119 | 107
118
183 | 170
179
216
374 | 289
623
661 | 693
571
514
452 | 45 | | Trouting tod to and in cooking to | | Bicar- | bonate
(HCO ₃) | 214
219
245
246
246 | 276
319
408 | 436
400
480
496 | 436
362
350 | 373
346
281
256 | 218 | | | Sodium
and po-
tassium
(Na+K) | | | 144
147
153
159
207 | 182
219
337 | 317
333
438
661 | 498
987
1, 031 | 1, 085
872
760
754 | | | 74 54 | | | sium
(Mg) | 20
20
20
20
20
20 | 388 | 35
35
46 | 100
100
100 | 114
81
73 | 15 | | 4 11 22 | | | cium
(Ca) | 25 25 26 26 26 26 26 26 26 26 26 26 26 26 26 | 88
98
118 | 124
116
112
123 | 338 | 366
274
250
258 | 61 | | 200000 | - 9 0S | con- | ance
(KX10 [§]
at
25° C.) | 110
113
121
126
150 | 140
163
230 | 222
228
269
374 | 316
633
685 | 719
569
507
514 | 80.5 | | | in dis-
om pre-
neasur- | d-feet) | Net
gain
(+) or
loss (-)
(unad-
justed) | | | | | | | | | Change in dis-
charge from pre-
ceding measur- | second-feet) | Inflow (+) or diver-sion(-) | | | | | | | | | | Dis- | (second-
feet) | 78.0
82.4
32.2
28.6
12.8 | 12.6
18.2
9.9 | 11.2
14.0
24.2
12.5 | 8.0
12.1
11.6 | 10.6
25.2
4.8
8.8
8.8 | 208 | | | | | point
point | 10. 0
12. 3
14. 5
17. 5 | 18.5
21.2
23.5 | 25.25
23.28
24.53
24.53
33.53 | 35.7
42.6
44.2 | 44.2
50.2
56.7
67.2 | 0 | | | | | sampling point | July 9: 1941 Above San Jose Wash——— Above Union Canal——————————————————————————————————— | July 10: At Safford, ArizAbove Smithville Canal At Thatcher, Ariz | At Thatcher, Ariz | At Eden crossingAbove Colvin-Jones Canal At Fort Thomas | July 12: At Fort Thomas At Geronino crossing At Bylas, Ariz At Calva, Ariz | Sept. 9: At gaging station below Bonita Creek | | | | Anal- | ysis
No. | 559
560
561
562
563 | 564
565
566 | 567
568
569
570 | 571
572
573 | 574
575
576
576 | 578 | | | | MINDIBER | or son. | FACE WA | IERS AN | n Giroonn | WILL | .13 99 | |-------------------|-----------------------------|---|---|--|---|---|--|--| | 8 | 844 | 52
51
54
54 | 54
55
66
66
66 | 2422 | 66
67
68 | 99 | 75 | 78 | | 41 | 888 | 44423 | 272388 | 25
460
593 | 121
288
282
255 | 66 | 69 | 40 | | 221 | 218
218
219 | 250
250
265
265
265 | 252
306
385
379 | 342
441
436
785
878 | 427
598
534
513 | 980 | 295 | 424 | | .62 | 8.8.2 | 07.
07.
88.
88. | . 82
1. 11
1. 39
1. 51
1. 73 | 1. 93
2. 71
4. 11
4. 08 | 1.95
2.276
2.58
4.0 | 8. | 1.88 | 445
469
469
401
790
600
600
600
600
600
600
600
6 | | 459 | 465
462
470 | 518
516
560
559
651 | 605
817
1,020
1,110
1,270 | 1, 420
1, 990
1, 900
3, 020
3, 000 | 1, 436
2, 028
1, 900
1, 766 | 728 | 1,382 | 2, 249 | | . 5 | 1.0 | 2.1.1.0 | 9,9,9,1.1
20,000 |
1.2. 25.
1.0.5
1.0.5 | 8000
0000 | | | | | 1.5 | 11.1 | 1.21.88 | 19919
0008
0008 | 11.9 | 994-99
547-0 | | | | | 135 | 138
135
135 | 165
165
175
172
202 | 180
280
322
412
412 | 465
680
690
1, 230
1, 250 | 512
780
750
700 | 300
300
255 | 550 | 445
545
565
790
660 | | 44 | 444 | 12.4.58.52
25.88.52
26.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.00
27.0 | 72
101
133
147
166 | 189
289
500
494 | 207
318
306
264 | 09 | 185 | 401 | | 219 | 218
219
224 | 25.
25.
25.
25.
25.
25.
25.
25.
25.
25. | 255
304
374
386
434 | 456
508
426
397
348 | 372
379
306
315 | 196 | 276 | 469 | | 95 | 94 | 111
110
121
118
1146 | 134
194
247
275
341 | 412
586
552
828
777 | 379
529
506
466 | 821 | 414 | 96 45 | | 16 | 15
16
15 | 16
15
17 | 88821 | 13885 | 34
44
44
66 | 11 | 88 | 45 | | 62 | 2223 | 66
72
78
78 | 73
88
105
104 | 86
109
104
225 | 115
164
138
133 | 76 | 49 | 96 | | 80.8 | 81.4
82.2
82.8 | 92.8
93.0
101
102
116 | 107
143
174
188
218 | 237
330
318
498
498 | 248
342
327
300 | 135 | 213
226 | 222
282
289
379
319 | | T | | | | | | 3.3-4-4-6 | 0
0
7
++6: | 1.8.1.1 | | - | | | | | | 38.5 | 0.5- | 18.9 1.6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 218 | 211 | 8.8.4.8.8
0.8.6.8.8.8
0.8.8.8.8 | 26.22.25
26.22.55
26.25.50
26.25.50 | 20.5
20.5
20.5
20.5 | 57.4
73.0
67.1
62.1 | 4.6.2
0 0 0 4.8.2
4.8.3 | 0.7 | 1.44.
7.40. | | 2.2 | 3.8
5.0
10.0 | 10.0
12.3
14.5
17.5 | 25.22
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25 | 28.38.39.39.39.39.39.39.39.39.39.39.39.39.39. | 44.2
50.2
56.7
67.2 | 0
1.2
5.6
9.0 | 13.7
15.9
17.7
19.9 | 19.9
22.6
25.2
29.3
30.5 | | Above Brown Canal | A fig. A bove San Jose Wash | Sept. 10: Above San Jose Wash Above Union Canal Below San Simon Creek Above Graham Canal At Safford, Ariz | Sept 11: At Safford, Ariz Above Smithville Canal At Thatcher, Ariz Above Dodge-Nevada Canal. At Pima, Ariz | Sept. 12: At Pima, Attz | Sept. 22: At Fort Thomas At Geronimo crossing At Bylas, Ariz At Calva, Ariz | June 23: 1943 At gage near Solomonsville, Arix Above Tridwell Canal Below San Jose wasteway Above Union Canal Below San Simon Creek | Above Graham Canal
At Safford, Ariz
Below Smithy ille Canal
Near Thatcher, Ariz | June 24: Near Thatcher, Ariz. Above Dodge-Nevada Cana At Pima, Ariz. Above Fort Thomas Canal. Near Glenbar, Ariz | | 579 | 581
582 | 583
584
585
585
587 | 588
589
590
591 | 593
594
595
596
596 | 598
600
601 | 602
604
605
605 | 607
608
609
610 | 611
612
613
614
615 | 1 The gaging station below Bonita creek was abandoned in 1941, and the gage near Solomonsville, Ariz., was the initial point for measurements made aries Changes in the chemical character of the water of Gila River between the mouth of Bonita Creek near Solomonsville, Ariz., and the Southern Pacific Railroad bridge at Calva, Ariz.—Continued | . ' | ** | | | | | | | | | | | | |--|--|---|---|--------------
--|---------------------------|------------------------------|--|---------------------------------------|--------------------------------|---|---| | | Per- | cent
sodi-
nm
nm | | 75 | 528 | | | 22 | 55 | 25 | 52
64
52
64 | 378 | | ness
CO ₃ | | Non-
car-
bon-
ate | | 577 | 1,466 | | | 45 | 44 | 22 | 66
57
46
42 | \$20°0 | | Hardness
as CaCOs | | Total | | 824 | 1,806 | | | 226 | 234 | 241 | 282
288
288
288 | 345
303
340 | | lved | | Tons
per
acre-
foot | | 22
24 | 3.11 | | | .75 | 62. | .78 | .93
.95
1.00 | 1.
2.1.
2.2.
2.3.
2.3. | | Dissolved solids | | Parts
per
mil-
lion | | 3,880 | 5,370 | | | 554 | 578
578 | 222 | 712
686
738 | 1, 120
1, 209
1, 643 | | | ż | trate
(NO ₃) | | | | | | rö. | 10.10 | 1.0 | 99999
9999 | 5.0
5.0 | | | П | oride
(F) | | | | | | 1.2 | | | 1.6 | | | | Chlo- | (CD) | 022 | 1,570 | 4,2,1,1,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0
0,000
0,000
0,000
0,000
0,000
0,000
0,000
0
0,000
0
0,000
0
0
0 | 1,850 | 1,000 | 190 | 188
192
196 | 196 | 82222
8222
8422
8422
8422
8422
8422
842 | 390
420
540 | | | | fate
(SO4) | | 022 | 970 | 1 | | 47 | 56 | 23 | 82438 | 166
188
234 | | | Bicar. | bonate
(HCO ₃) | | 302 | 416
254 | 1 | | 230 | 232 | 230 | 278
268
273
239 | 306
309
498 | | | Sodium
and po-
tassium
(Na+K) | | | 1, 121 | 1,276 | 1 | | 127 | 132 | 129 | 158
155
191 | 291
342
498 | | | Mag-
ne-
sium
(Mg) (| | | 95 | 148
25 | 1 | | 91 | 17 | 18 | 2882 | #88
#88 | | | Cal-
cium
(Ca) | | | 174 | 87 | | | 64 | 99 | 29 | 8222 | 84
72
80 | | Spe- | cific
con- | ductance
ance
(K×10 ^s
at
25° C.) | 351 | 574 | 4388
434
434
434
434
434
434
434
434
434 | 718 | 417 | 102 | 101
105
107 | 106 | 126
124
133 | 196
210
279 | | | oint
I-feet) | Net
gain
(+) or
loss (-)
(unad-
justed) | 1 | +- | | | 2.57 | | 3.5- | į | | 9. 9.
5.05.
4.1. | | Change in dis-
charge from pre-
ceding measur- | (second-feet) | Inflow
(+) or
diver-
sion(-) | - | | 0000 | | 000 | | 35.9-
4+ | 1 | 12.1-
2.5+
1.0+ | 8.3+ | | | -siQ | charge
(second-
feet) | 6 | 1.5 | 25. 1. | | , , , o | 61.9 | 28. 4
24. 1 | 83 | 14.6
10.1
7.1 | 5.23
4.0 | | | | below
initial
point | 32.2 | 37.7 | 41.6
51.5
51.5 | 45.5 | 55.6
65.7 | 0 | 1.2
7.4
9.0 | 9.0 | 11.1
13.7
15.9
17.7 | 19.9
22.6
25.2 | | | Date sampled and
sampling point | | 1948 June 24—Continued At Edan grossing | Near Ashurst | At Fort ThomasAt Geronino crossing | June 25:
Near Geronimo | At Bylas, ArizAt Calva, Ariz | Sept. 15:
At gage near Solomonsville, | Above San Jose Wash Above Union Canal | Sept. 16:
Above Union Canal | Below San Simon Creek——— Above Graham Canal———— At Safford, Ariz. Above Smithville Canal——— | Near Thatcher, Ariz. Above Dodge-Nevada Canal At Pima, Ariz | | | A nal- | No. | AIA. | 617 | 619
620
620 | 622 | 323 | 626 | 628
629 | 630 | 632
633
634 | 635
637 | | 73 43 43 43 43 43 43 43 43 43 43 43 43 43 | 65
64
68
88 | 67 | 55
66
67
75 | 888444 | \$ \$ \$ \$ \$ \$ \$ | 928882 | 888 | |--|--|--|---|---
--|---|--| | 0
24
31
514 | 1,083
1,125
1,044
646
622 | 602
584
639 | 96000 | 91
174
254 | 280
351
266
246
304 | 420
88 | 9.85
65.8 | | 388
432
408
367
842 | 1,318
1,402
1,257
1,257
830
830 | 828
777
818 | 322
246
318
306
354 | 320
352
432
492 | 558
624
516
532
499
568 | 888888 | 348
340
371 | | 22.22.4.
22.83.23.4.24.81.24.81.24.24.24.24.24.24.24.24.24.24.24.24.24. | 6.08
6.34
4.22
4.18 | 4.8.4
4.09 | 1
2.1
2.43
20 | 2, 15
1, 30
2, 15
2, 15
2, 46 | 9999999
8646468
8646468 | 1.12
1.37
1.47
2.19 | 2.48
1.58
1.70 | | 2, 140
2, 140
2, 024
3, 540 | 4, 470
4, 660
4, 530
3, 100
3, 070 | 2, 970
2, 790
3, 010 | 801
585
1, 180
1. 050
1. 620 | 1. 580
1. 340
1, 580
1, 810 | 1, 900
1, 880
1, 840
2, 100 | 827
666
1,010
1,080
1,610 | 1,820
1,160
1,250 | | 11
55.0
3.00
3.00 | 44444
00000 | 888
000 | 1.1.4.6.4
0.00
0.00 | ಸ.4.ಬ.ಚ.
೧೦೦ಬರ | 44 % . | 8.8.4.4.0
0008 | 0.4.8.
0.74.00 | | 1.9 | 1.7 | 1.4 | | | | | | | 730
730
735
735
730
1,390 | 1, 910
2, 020
1, 970
1, 320
1, 290 | 1, 240
1, 185
1, 330 | 248
176
375
335
555 | 555
420
590
710 | 740
860
740
750
715
840 | 252
200
310
350
550 | 650
375
415 | | 231
383
371
356
672 | 825
802
809
556
556 | 526
486
486 | 105
68
160
158
249 | 200
200
300
300
300
300 | 388
388
388
388
388
388
388
388
388 | 105
81
135
152
240 | 286
167
189 | | 526
481
469
410
401 | 287
338
259
224
253 | 276
236
218 | 312
253
407
338
433 | 395
370
358
315
315
291 | 33.3
33.3
30.8
30.8
30.8
30.8
30.8
30.8 | 325
273
369
348
348 | 418
373
373 | | 474
641
647
624
990 | 1, 137
1, 180
1, 187
1, 187
826
815 | 781
734
804 | 181
129
330
281
481 | 478
340
358
426
489 | 295
505
519
588 | 200
164
269
290
464 | 8308
331 | | 254
44
8
8 | 119
114
106
72
70 | 842 | 88888 | 33
33
33
84
84 | 4524344 | 36
36
36
36 | 32841 | | 98
198
198
198 | 332
374
329
214
217 | 808
808
808
808 | 86
87
88
84
84 | 69
100
109
118 | 148
164
136
144
134 | \$ 50 \$ 25 \$ 50
\$ 4 4 5 5 | 22
36
80
80 | | 275
359
355
341
573 | 731
748
732
516
510 | 490
468
510 | 140
104
203
275 | 215
228
269
307 | 317
322
323
308
308 | 140
112
172
182
269 | 303
195
211 | | 3.8+
-9-
1.0-1 | 1. 2. 8. 4. 4. 4. 4. 6. 6. 6. 4. 4. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. | 0.3 | 1.17.7.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1. | 1.84 | 6,11.76 | 11.3-
20.7+
1.4+ | 4. 5+ | | 2.4- | 00000 | 00 | 22.12
8.9+
36.9+ | 13.1+
15.4+
4.5+ | 1.8
1.8
1.8
1.8
1.8 | 22.9+
5.25-
66.9- | 30.1+
6.0+ | | 12259 | 10.65
10.66
10.66 | 3.99 | 85.3
20.9
37.3 | 1.8
16.7
31.4
32.9
36.0 | 29.0
40.0
52.9
46.8 | 10.8
32.4
41.9
67.8 | 34.2 | | 25.2
29.3
37.2
37.7 | 39.9
41.6
45.5
48.0
51.5 | 51.5
55.6
65.7 | 25.2
20.3
30.5 | 30.5
32.2
37.7
39.9
41.6 | 41. 6
45. 5
48. 0
51. 5
55. 6 | 25. 2
20. 3
30. 5 | 30.5
32.2
37.7 | | Sept. 17: At Pima, Artz | A bove Colvin-Jones Canal At Fort Thomas Near Geronimo At Geronimo crossing At Black Point | Sept. 18: At Black Point At Bylas, Ariz At Calva, Ariz | Nov. 4:
Near Thatcher, ArizAbove Dodge-Nevada Canal
At Pima, ArizAbove Fort Thomas Canal
Near Glenbar. | Nov. 5:
Near GlenbarAt Eden crossing
Near AshurstAbove Colvin-Jones Canal
At Fort Thomas | Nov. 9: At Fort Thomas Near Geronimo At Geronimo crossing At Black Point At Black Point At Blask Ariz At Calva, Ariz | Dec. 13: Near Thatcher, Ariz Above Dodge-Nevada Canal. At Pima, Ariz Above Fort Thomas Canal. Near Glenbar. | Dec. 16:
Near GlenbarAt Eden crossing
Near Ashurst | | 638
640
641
642 | 643
644
645
646
647 | 845
650
650 | 651
653
653
654
655 | 656
658
659
660 | 662
663
665
665
665 | 667
668
669
670
671 | 672
673
674 | Changes in the chemical character of the water of Gila River between the mouth of Bonita Creek near Solomonsville, Ariz., and the Southern Facific Railroad bridge at Calva, Ariz.—Continued | I | Per-
cent
sodi-
um | 955 | 92 | 66
65
65 | 99 | 649
622
74 | 77
70
86
85
85 | |--|---|------------|----------------------------|---|--|---|---| | | | | 194 | 246 | 2588
999 | 40000 | 34 7
107 6
236 6 | | Hardness
as CaCOs | Non-
car-
bon-
ate | 160 | | ্ষ্ত্রন | 2222 | 444 | . 288 | | Har
as C | Total | 469
494 | 502 | 552
542
514 | 486
482
448 | 258
250
296
326 | 417
416
448
573
655 | | lved | Tons
per
acre-
foot | 2.08 | 2.26 | 2.53
2.34
34 | 2,2;2;28
28,24 | . 98
. 98
1. 17
1. 46
1. 96 | 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2, | | Dissolved
solids | Parts
per
mil-
lion | 1, 530 | 1.660 | 1.860 | 1.680
1.680
1.650 | 717
720
863
1,070
1,440 | 1,860
1,610
1,610
1,970
2,200 | | | Ni-
trate
(NO ₃) | 4.0 | e.
10 | 3.50 | 4.0
3.5
5.0 | 11:00:00
00:00:00 | 24 2 2 4
20000 | | | Flu-
oride
(F) | | | | | | | | | Chlo-
ride
(Cl) | 545
600 | 610 | 700
685
640 | 620
625
625 | 214
214
265
345
485 | 620
540
555
725
845 | | | Sul-
fate
(SO4) | 237
255 | 256 | 22,825 | 258
257
257 | 93
93
114
153
213 | 278
242
260
320
365 | | | Bicar-
bonate
(HCO ₃) | 377
374 | 376 | 372
367
364 | 360
352
323 | 290
291
321
352
414 | 540
465
416
411
390 | | | Sodium
and po-
tassium
(Na+K) | 395
426 | 431 | 484
476
448 | 444
445
446 | 174
179
295
295
423 | 549
452
436
516
570 | | | Mag-
ne-
sium
(Mg) | 84 | 40 | 223 | 37
37
36 | 118
22 22 22 22 22 22 22 22 22 22 22 22 22 | 32
32
47
55 | | | Cal-
cium
(Ca) | 122 | 135 | 150
146
146 | 134
132
120 | 77
72
88
84
88 | 111
114
120
152
172 | | Spe- | cific
con-
duct-
ance
(K×10 ⁵
at
25° C.) | 254
271 | 280 | 305
301
289 | 281
282
274 | 125
126
150
183
241 | 305
269
273
370 | | in dis-
om pre-
neasur- | | 3.7+ | - | .7.88.29
1.89.49
1.60
1.60 | 3.2+
.1-
5.2+ | 23.37
10.37
4.44 | 4466 | | Change in dis-
charge from pre-
ceding measur- | (second-feet) Inflow gain (+) or diver- loss (-) sion (-) (unad- | 8.1+ | | 3:8
0.0
0.0
0.0
0.0 | 000 | 15.9+
3.2+
75.0- | 19.3+
3.7+
0
4.3+ | | | Dis-
charge
(second-
feet) | 48.4 | | 625
76,0
76,0 | 79. 2
79. 1
84. 3 | 23.9
39.3
63.2
6.1 | 3.1
2.8.3
3.4.8
3.8.2
4.6.2 | | | Miles
below
initial
point | 39.9 | 41.6 | 4.7.4
4.0.3
4.0.0 | 51.5
55.6
65.7 | 19.52.2
25.26
30.32
50.33 | 30.5
32.2
37.7
39.9 | | | Date sampled and sampling point | | Dec. 14:
At Fort Thomas | At Wash Delow For I Homas. Near Gerorimo. I mile below Goodwin Wash At Geronimo crossing | At Black Point At Bylas, Ariz At Calva, Ariz | 1944 Near Thatcher, Ariz. Above Dodge-Nevada Canal. A t Pima, Ariz. Above Fort Thomas Canal Near Glenbar. | Feb. 15: Near Glenbar | | | Analysis
No. | 675
676 | 677 | 679
679
680
681 | 683
683
684 | 685
686
687
688
689 |
690
691
692
693
694 | | | | | | | | | | 100 | |---|--|--|--|--|--|--|--|--| | 67
67
67 | 288 | 60
72
78
78 | 76
73
68
67 | 66
69
69
69 | 2886 | | 929 | 60
61
60 | | 626
628
553
509 | 510
452
414 | 94
44
88
68
15 | 54
332
650
921 | 1,010
1,050
966
802
738 | 692
674
626
625 | | 62
46 | 33 | | 1, 020
999
899
840 | 810
726
662 | 485
325
400
450
373 | 392
476
731
984
1,320 | 1, 310
1, 370
1, 270
1, 040
1, 040 | 908
899
874
808 | | 230
228
221 | 296
206
214 | | 4.58
4.65
4.39
4.11 | 3.71 | 1.89
1.32
1.96
2.90 | 2.60
3.92
4.87
6.31 | 6.20
6.38
6.11
5.37 | 4.4.4.
4.35
7.27 | | 8.88 | 1.13 | | 3, 370
3, 420
3, 230
3, 020 | 2, 960
2, 730
2, 580 | 1, 390
974
1, 440
2, 130
1, 960 | 1,910
2,030
2,880
3,580
4,640 | 4, 560
4, 4, 690
3, 950
3, 690 | 3, 460
3, 430
3, 200
3, 140 | | 626
623
627 | 832
590
609 | | 4.7.8.7.8.
0000 | 3.0
3.0 | 8.8.84.1
8.7.4.0
8.0.0 | 113,12 | 1000000
000000000000000000000000000000 | 1.0 | | 00. | 5.0 | | | | | | | | | | | | 1, 370
1, 370
1, 400
1, 280
1, 200 | 1, 190
1, 110
1, 060 | 445
315
460
740
700 | 660
700
1, 060
1, 440
1, 990 | 1, 950
1, 970
1, 890
1, 670
1, 540 | 1,450
1,440
1,330
1,360 | 176
176 | 234
226
224 | 274
194
202 | | 589
599
613
570
525 | 519
478
435 | 193
128
200
377
323 | 298
326
534
654
817 | 805
848
810
723
674 | 635
623
571
537 | | 58
63
63 | 118
74
74 | | 403
447
452
422
403 | 365
312
303 | 476
342
478
466
434 | 486
516
486
408
351 | 363
399
367
287
300 | 264
274
302
224 | | 205
213
214 | 266
211
217 | | 884
879
914
851
797 | 787
734
707 | 340
246
393
631
601 | 574
586
792
949
1, 210 | 1, 180
1, 200
1, 170
1, 060
1, 060 | 927
923
849
852 | 11 | 151
151
151
155 | 201
146
150 | | 84
79
73
67 | 67
63
59 | 33
33
41 | 39
43
71
90
119 | 118
118
108
93
85 | 80
74
74 | | 16
16
15 | 24
16
17 | | 245
265
270
240
226 | 214
187
168 | 130
89
106
106
82 | 93
120
176
246
331 | 331
356
330
262
254 | 228
228
238
238
238 | | 888 | 79
56
58 | | 550
558
562
527
492 | 485
455
428 | 234
169
244
353
326 | 315
336
467
582
744 | 733
747
719
639
599 | 568
561
526
521 | 98.3
98.6 | 115
115
114 | 146
106
110 | | 6.9
6.9
7
7
1
1
1 | 1.2+
5.4+
4.1+ | 20.03 | 1.6
4.5.
+4.5.
+4.0. | 1.6.2+ | .94
444
11+1 | +9. | 3.5 | 3.88
-1.09
-1.09
-1.09 | | 1.0+ | 000 | 11.3+
1.9+
21.3-
12.4- | 0 0 0 4 | 0000 | 0000 | 0 | 44.6- | 23.7+
.2+
6.8-
ed below. | | 24.6
26.1
33.0
42.7
46.8 | 48.0
53.4
57.5 | 4.3
16.9
27.8
13.1
2.7 | 2,4,8,5
4,0,0,0,0
4,0,0,0,0,0 | 9.6
11.2
17.4
22.4
24.0 | 23. 6
21. 2
25. 6
25. 1 | 122.9
123.5 | 95. 6
42. 4
42. 4 | 27.5
24.7
16.3
measured | | 41.6
43.4
47.3
48.0 | 51.5
55.6
65.7 | 19.9
22.6
25.2
30.5 | 30.5
32.2
37.7
39.9 | 43.4
45.5
46.9
47.3 | 48.0
51.5
55.6
65.7 | 0 | 1.2
7.4
9.0 | 9.0
11.1
13.7
15.9
Creek, flow | | At Fort Thomas. At wash below Fort Thomas. At wash below Fort Thomas. Near Geroinno. I mile below Goodwin Wash. At Geronino crossing. | At Black Point
At Bylas, Ariz
At Calva, Ariz | Apr. 12: Near Thatcher, Ariz. Above Dodge-Nevada Canal At Pima, Ariz. Above Fort Thomas Canal Near Glenbar | Apr. 13: Near Clenbar At Eden crossing Near Aburst Above Colvin-Jones Canal At Fort Thomas | Apr. 14: At Fort Thomas. At Wash below Fort Thomas. Near Geronimo. ½ mile below Goodwin Wash. I mile below Goodwin Wash. | At Geronimo crossing
At Black Point
At Bylas, Ariz | May 1: At gage near Solomonsville, Ariz. Above Tidwell Canal | May 10:
Below Tidwell Canal
Above San Jose Wash
Above Union Canal | May 1: Below Union Canal | | 695
696
697
698
699 | 700
701
702 | 705
705
705
705 | 708
710
711
712 | 227
227
24
27
27
27 | 728
729
721 | 722 | 724
725
726 | 727
728
730
730
88a | Changes in the chemical character of the water of Gila River between the mouth of Bonita Creek near Solomonsville, Ariz., and the Southern Pacific Railroad bridge at Calva, Ariz.—Continued | | | | | | | 00022202 | - 21212 | • | | |----------------------------------|---------------|--|--|--
--|--|---|--|--| | | Per- | cent
sodi-
um | 59
61
72 | 67
74 | 8288 | 828
78
70 | 178888 | 822 | 19 | | ness
ICOs | | Non-
car-
bon-
ate | 43
36
74 | 72 | 0
67
16 | 668
929
929 | 902
902
903
900
900
900 | 692
686
655 | 72 | | Hard
as Ce | | Total | 232
271
302 | 383 | 283
204
287 | 369
322
472
899
1, 090 | 1,090
1,100
1,080
858
834 | 832
818 | 232 | | lved
ds | | Tons
per
acre-
foot | 1.08
1.70 | 1.81 | 22.33 | 2,2,2,68
2,2,79
7,4,5
78
78 | 5.57.57.4.4.90
6.90
6.90
6.00
6.00
6.00
6.00
6.00
6 | 4.4.4
1.46
34.8 | 8. | | Disso | | Parts
per
mil-
lion | 640
793
1, 250 | 1, 330 | 1,890 | 1, 970
4, 3, 540
5, 580
500
500 | 4, 4, 220
3, 600
3, 800 | 3, 460
3, 280
3, 190 | 099 | | | ż | trate
NOs) | 5.25
0.55 | 7.8 | 12
10
3.0 | 1.0000 | 112050 | 10:10:10 | • | | | | | | | | | | | | | | 5145 | CG
CG
CG
CG
CG
CG
CG
CG
CG
CG
CG
CG
CG
C | 210
256
460 | 455
455 | 3382 | 700
1,020
1,490
1,860 | 1, 830
1, 560
1, 560
4, 40 | 1,460 | 262 | | | Sml. | fate
(SO ₄) | 80
100
193 | 191 | 270
338
331 | 319
356
491
670
778 | 747
779
768
676
622 | 634
543 | 22 | | | Ricar. | bonate
(HCO ₃) | 231
287
278 | 380
261 | 388
330
330 | 233
233
282
196 | 228
214
233
156
212 | 253
178
199 | 196 | | | Sodium | and po-
tassium
(Na+K) | 155
198
359 | 357 | 568
595
616 | 605
652
768
980
1,150 |
1,120
1,130
1,130
1,000
1,000 | 932
889
867 | 164 | | | | | 19
21
37 | 88 | 848 | 82288 | 75888
75888
75888 | 28.87 | 17 | | | ر
اور | cium
5 (Ca) | 62
84
85 | 91 | 46
49
49 | 212
257 | 88888 | 200 | | | Spe- | ciffe
con- | duct-
ance
(KX10
at
25° C.) | 115
140
221 | 232
219
304 | 325
331 | 333
352
432
586
700 | 679
688
683
601
557 | 571
548
539 | 123 | | o in dis-
rom pre-
measur- | d-feet) | Net
gain
(+) or
loss (-)
(unad-
justed) | 3.4+ | + 3+ | 6.8+ | 1.21.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1. | . 7. 4. 1.
++7. 4. 1.
++4. 2. 1. | 29.
19.
19. | | | Change
charge fr
ceding 1 | (secon | Inflow (+) or diversion (-) | 1. 2+
13. 6- | 2.2+ | 15.3- | 1.3+
0.3+
5+ | 0000 | 000 | | | | SiO. | charge
(second-
feet) | 19.4
13.6
3.4 | 8.9.7
0.4.2 | 4.62. | 2.6
5.6
11.9
11.9 | 10.0
10.8
16.3
22.2 | 19.9
20.7
18.5 | 49.2 | | | Miles | below
initial
point | 15.9
17.7
19.9 | 19.9
22.6 | 888 | 30.5
32.3
37.7
39.9 | 41.6
43.4
47.3
48.0 | 51.5
55.6
65.7 | • | | | | Date sampled and sampling point | May 2: 1944 At Safford, Ariz. Above Smithville Canal | May 3:
Near Thatcher, ArizAbove Dodge-Neyeada Canal
A t Pime. A riz. | At Pins, Ariz. Above Fort Thomas Canal Near Glenbar. | May 4: Near Glenbar At Eden crossing Near Ashurst. Above Colvin-Jones Canal At Fort Thomas | May 5: At Fort Thomas At wash below Fort Thomas. Near Geroumo. I mile below Goodwin Wash. At Geronimo crossing. | At Black Point. At Bylas, Ariz. | June 19:
At gage near Solomonsville | | | A nel- | No. | 731
732
733 | 734
735 | 738
738
738 | 24.
24.
24.
24.
24.
24.
24. | 745
746
747
748
749 | 750
751
752 | 753 | | | | Charge in disconding measure contains measure in good in ground (second-feet) con Disconding from Price (second-feet) con Cal. Mag. Sodium River. Sml. Chilo. Wil. | Charge from pre- ceding measur- ing point Second-feet) Date sampled and point feet) point feet) Net charge from pre- sampling point point feet) Net charge from pre- sampling | Part | Date sampled and below charge from profile Date sampling point feet) feet) Date sampling feet fee | Particular Par | Part | Particular Par | Date sumpled and bold, cond-food Date sumpled and bold, cond-food Date sumpled and bold, cond-food Date sumpling point Date Date sumpled and bold, cond-food Date sumpling point Date | | | | | - | ~ | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | 0,200 | | | |--|---|---|---|---------------------------------------|---|---|--|--|---| | 23 | 49 | 99 | 83 | 79 | 88188 | 2855 | 222 | 88828 | 288 | | 8 | 96 | 141 | 138 | 840 | 12
63
901
1, 500
1, 670 | 1,660
1,610
951
528 | 450
446
460 | 1, 190
1, 600
1, 900 | 1, 780
807
390 | | 88 | 251 | 442 | 530 | 264
264 | 317
366
1, 200
1, 810
1, 880 | 1,820
1,790
1,170
778 | 618
636
622 | 304
382
1, 460
1, 820
2, 080 | 1, 920
1, 060
548 | | 8. | 1.10 | 2.03 | 2.16 | 4 8.21
8.25
8.30
8.30 | 2.92
3.05
7.56
8.19 | 8.8.96
6.29
8.20 | 3.51 | 2.95
3.14
7.75
7.47
8.65 | 7.89
5.30 | | 629 | 908 | 1, 490 | 1, 590 | 2,280 | 6,5,4,2,9
6,5,4,9,40
6,020
020 | 5, 950
6, 020
4, 560
3, 110 | 2, 850
2, 580
2, 430 | 2,170
2,310
5,490
6,360 | 5,800
3,900
2,350 | | 0 | 5.0 | 12.0 | | 8.0
4.0
5.4 | 841:14
80008 | 21112 | 2.0
1.0
1.0 | က်က်က်ကဲ့ | ים יסיני | | | | | | | | 1.1 | | | | | 26 | 284 | 535 | 545 | 7417
780
780
780
780 | 790
850
2, 450
720 | 2,700
2,670
1,970
1,280 | 1,080
1,080
1,040 | 810
825
2, 470
2, 900 | 2, 650
1, 660
985 | | 32 | 134 | 220 | 225 | 426
371 | 382
381
1,000
945
1,030 | 1, 040
1, 110
816
556 | 467
454
414 | 392
423
1,120
940
1,100 | 1, 010
685
416 | | 192 | 190 | 363 | 478 | 201
438
326 | 372
369
364
375
264 | 196
209
304 | 205
232
197 | 342
424
336
272
220 | 175
309
194 | | 161 | 506 | 391 | 399 | 701
789 | 691
705
1,360
1,350
1,490 | 1, 490
1, 520
1, 230
854 | 718
713
662 | 703
722
1, 540
1, 320
1, 540 | 1,390 | | 18 | 23 | 43 | 4 | 8 4 | 43
132
147
164 | 164
160
97
61 | 55 | 41
42
155
156
182 | 171
80
46 | | 98 | 26 | 106 | 140 | 74
89
38 | 56
96
483
485 | 459
452
309
211 | 160
164
165 | 230
84
84
830
533 | 283
144
144 | | 121 | 142 | 255 | 270 | 323
323
323
323 | 362
378
778
882
952 | 946
947
735
513 | 434
433
413 | 370
386
891
876
1,000 | 936
640
400 | | 3-7-0 | 411 | 1.3 | | 3. 0.
+ 1.
+ 1. | 1.3+
+8:1 | 3.2. | 1.4.14
1.01 | 1++89 | 3.3.4
++ | | 68.2
0
0 | 3.2+ | 1.3+ | | 3.5.
-1.2.6. | 0000 | 000 | 0000 | 000 | 000 | | 0 0 | 4,00
8 | 00 | 8 0 | ,
,
,
,
,
, | 8: 1: 2: 1: 1: 2: 2: 2: 2: 2: 2: 2: 2: 2: 2: 2: 2: 2: | 1.1 | 023.7 | 7.0
8.1.1
1.1.8 | 7.00° | | 1.2
4.7.9 | 11.1 | 15.9
17.7
19.9 | 19.9
22.6 | ន្លង់ន្ល់ន្លំ
ក្នុងសេច
ក្នុងសេច | 30.5
32.2
37.7
39.9
41.6 | 43.4
47.3 | 48.0
51.5
55.6
65.7 | 30.5
32.2
37.7
39.9 | 14.84.84
4.65.54
0.05 | | Above Tridwell Canal Above San Jose Wash Above Union Canal | Below San Simon Creek
Above Graham Canal
At Safford, Ariz | June 20: At Safford, ArizAbove Smithville Canal Near Thatcher, Ariz | June 21:
Near Thatcher, ArizAbove Dodge-Nevada Canal | At Pima, Ariz | June 22: Near Glenbar At Eden crossing Near Ashurst Above Colvin-Jones Canal At Fort Thomas | June 23: At Fort ThomasThomas. At wash below Fort Thomas. Near Geronimo | At Geronimo crossing
At Black Point
At Bylas, Ariz
At Calva, Ariz | Aug. 7: Near Glenbar. At Eden crossing. Near Ashurst. Aboye Colvin-Jones Canal At Fort Thomas. | Aug. 8: At Fort Thomas At wash below Fort Thomas Near Geronimo At Geronimo crossing | | 754
755
756 | 757
758
759 | 760
761
762 | 763 | 36788
36488 | 769
770
771
772 | 774
775
776 | 277
278
281 | 282228 | 787
788
789
790 | Changes in the chemical character of the water of Gila River between the mouth of Bonita Creek near Solomonswille, Ariz., and the Southern Pacific Railroad bridge at Calva, Ariz.—Continued | | Per-
cent
sodi-
um | 72 | 58
62
62 | 46
55
59 | 66
68
68
68 | 66
66
66 | 66
67 | 99 | |--|---|--|--|-------------------------|--|--|------------------|--------| | ness
CO3 | Non-
car-
bon-
ate | 354
378 | 28
14
22 | 18
44
44 | 49
112
234
300 | 328
370
431
408 | 389 | 510 | | Hardness
as CaCO ₃ | Total | 520
534 | 216
198
252 | 286
318
320 | 358
431
487
542 | 650
750
702 | 678 | 754 | | lved
ds | Tons
per
acre-
foot | 2, 2,
29, 88 | .76 | 1.23
1.43 | 1. 63
2. 94
2. 45
66 | 23.23.00
25.23.00
25.25 | 3. 14
3. 06 | 3.54 | | Dissolved | Parts
per
mil-
lion | 2, 190
2, 150 | 556
529
744 | 902
1,050
1,050 | 1, 200
1, 500
1, 800
1, 950 | 2, 2, 050
2, 440
2, 390 | 2, 310
2, 250 | 2, 600 | | | Ni-
trate
(NO ₃) | .00 | 4.0
3.0
0.8 | 000 | 3.0
1.0
1.0 | 0000
0000 | 1.0 | 1.0 | | | Flu-
oride
(F) | | | | | | | | | | Chlo-
ride
(Cl) | 910 | 160
154
230 | 285
340
340 | 390
400
515
685
765 | 775
825
955
945 | 910
910 | 1,080 | | | Sulfate
(SO ₄) | 388
371 | 95
58
88 | 118
155
154 | 239
390
337 | 334
403
408
403 | 388 | 434 | | | Bicar-
bonate
(HCO ₃) | 202 | 228
224
280 | 327
336
337 | 377
390
308
295 | 394
341
390
360 | 352 | 298 | | | Sodium
and po-
tassium
(Na+K) | 613 | 128
126
187 | 234
276
275 | 318
398
485
520 | 513
558
617
619 | 598 | 674 | | | Mag-
ne-
sium
(Mg) (| 2.2 | 16
20
20 | 828 | 27
35
50 | 28
28
28
28 | 28 | 62 | | | Cal-
cium
(Ca) | 139 | 98 | 88
88
87 | 99
115
121
135 | 175
168
202
186 | 181 | 200 | | Sne | cific
con-
duct-
ance
(K×10 ^s
at
at | 376
370 | 96. 2
93. 9
129 | 154
179
182 | 206
322
328
328 | 341
355
400
397 | 383
376 | 435 | | in dis-
om pre-
neasur- | ing point (second-feet) Inflow | 2.2.
1.1.1
- 1.2. | 6.0+ | 6.2+ | 1. 1. 2. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. | 1.3-
2.2+
6.0+ | 3.3.4 | .5- | | Change in dis-
charge from pre-
ceding measur-
| ing r
(secon-
secon-
lnflow
(+) or
diver-
sion(-) | 0 | 23.1+ | 2.8+ | | 000 | 000 | 00 | | | Dis-
charge
(second-
feet) | 5.3
0.4.2 | 31.2
54.6
43.3 | 33.7
42.7
40.9 | 36.1
38.4
37.8
39.2
43.0 | 41. 2
39. 9
42. 1
48. 1 | 50.7
47.4 | 48.7 | | | Miles
below
initial
point | 51. 5
55. 6
65. 7 | 19.9
22.6
25.2 | 25. 2
29. 3
30. 5 | 30.5
32.2
39.2
41.6 | 45.5
47.3
47.3 | 51.5 | 86.7 | | | Date sampled and
sampling point | Aug. 8—Continued At Black Point At Black Point At Bylas, Ariz At Calva, Ariz | Oct. 30:
Near Thatcher, Ariz
Above Dodge-Nevada Canal
At Pima, Ariz | Oct. 28: At Pima, Ariz | Oct. 26: Near Glenbar At Eden crossing. Near Ashurst. Above Colvin-Jones Canal At Fort Thomas. | Oct. 27: At Fort Thomas At wash below Fort Thomas. Near Geronimo | At Black Point | | | | Anal-
ysis
No. | 791
792
793 | 794
795
796 | 797
798
799 | 803
803
804
804 | 805
806
807
808 | 808 | 812 | Chemical character of the water of tributaries of and diversions from Gila River between the mouth of Bonita Creek near Solomonsville, Ariz., and the Southern Pacific Railroad bridge at Calva, Ariz. | | er- | cent
sodi-
um | | 76
39
56 | | 74 | | 62 | | . 24 | | |---------------------------------|----------------------|---|----------------------------------|---|---|---|-----------------------------------|--|--|--------------|--------------------------------| | | | Non- s
car-
bon-
ate | | 212.55 | | 0 | - | 156 | | 24 | | | | Hardness as
CaCO3 | Total P | | 231
140
216 | | 293 | - | 874 | | 94 | | | | red
Is | Tons
per
acre-
foot | | 1. 52 | | 1.82 | - | 1.56 | | 0. 19 | | | | Dissolved
solids | Parts
per
mil-
lion | | 1, 120
249
543 | | 1,336 | - | 1, 150 | | 138 | | | | | Borate
(BO ₃) | | 1.5 | | 5.0 | | 6.0 | | | | | | | trate
(NO ₃₎ | | 11.0 | | 71 | | 4.0 | riz. | | | | | Į. | ride
(F) | | 2.7 | er, Ariz. | 3.1 | | 1.7 | rtesia, A | | | | [uc | Ot.1 | ride
(CI) | lríz. | 355
42
157
143 | r Thatch | 425
48
206
139 | Ariz. | 390
4.8
260
144 | ıg near A | 9 | | | er millic | • | fate
(SO ₄) | tcher. | 178 33 64 | ane nea | 217 | atcher, | 210 | crossin | 44 | | | in parts p | Ā | bonate
(HCO ₃) | near Tha | 320
165
238 | ng Ray L | 369 | l near Th | 266
83 | anch road | 98 | | | [Analyses in parts per million] | Sodium | and po-
tassium
(Na+K) | Union Canal near Thatcher, Ariz. | 337
42
125 | Union Canal diversion along Ray Lane near Thatcher, Ariz. | 393 | Graham Canal near Thatcher, Ariz. | 285 | Stockton Wash above Rays Banch road crossing near Artesia, Ariz. | 14 | | | 1 | | sium
(Mg) | Uni | 21
11
15 | anal div | 42 | Grab | 25 | sh abov | 8.3 | | | | | cium
(Ca) | | 98 88 | Jnion C | 78 | | 76 | kton Wa | 22 | | | | Specific
con- | duct-
ance
(K×10 ⁵
at 25° C.) | | 195
44. 6
93. 9
85. 1 | | 225
46.8
119
85.5 | | 200
16.8
141
87.6 | Stoc | 23.2 | | | | Mean | charge
(second-
feet) | | | | | | | | | | | | | Date sampled | | Sept. 6, 9, 13, 17, 23, 1943 1
Sept. 27, 30 2
Feb. 3, 7, 10, 14, 1944 3
Jan. 3, 6, 10, 13, 17, 20, 24, 28, 314 | | Sept. 29, 1943 1. Sept. 30 2. Oct. 4, 11, 14, 18 3. Dec. 9, 13 4. | | Sept. 2, 6, 13, 17, 20, 23, 1943 1
Sept. 27 1 | | Mar. 4, 1941 | See footnotes at end of table. | | 879 | 751— | No. | | 813
814
815
815 | | 817
818
819
820 | | 822
823
823
824 | | 825 | See | Chemical character of the water of tributaries of and diversions from Gila River between the mouth of Bonita Creek near Solomonsville, Ariz., and the Southern Pacific Railroad bridge at Calva, Ariz.—Continued | Per- | cent
sodi-
um | | 27 | | 33 | | 83 | | 44 | | 35 | | 0.9 | |----------------------------------|--|---|--------------|---|--------------|---|--------------|--|--------------|---|--------------|--|--------------| | ess as
O ₃ | Non-
car-
bon-
ate | | 21 | | 15 | | 8 | | - | | 1 | | 26 | | Hardness as
CaCO ₃ | Total | | 96 | | 43 | | 46 | | 34 | | 41 | | 82 | | lved | Tons
per
acre-
foot | | 0.20 | | 0.10 | | 0.10 | | 0.09 | | 0.10 | | 0.08 | | Dissolved solids | Parts
per
mil-
lion | | 141 | | 7.5 | | 76 | | 69 | | 72 | | 62 | | | Borate
(BO ₃) | | - | | | | | | | | | | | | 2 | trate
(NO ₃) | riz. | | | | | | , ri | | zi | | | | | Ē | Fige
ride
(F) | Artesia, A | | Ariz. | | ė. | | tesin, Ari | | esia. Ari | | ia, Ariz. | | | į | Grade
Grade | ng near | 6 | Artesia, | es | tesia, Ar | 4 | near Ar | 4 | near Art | 69 | ear Artes | က | | | Sulfate
(SO ₄) | d crossi | 17 | se near | 31 | near Ar | 33 | untains | 8 | way 666 | 24 | dam ne | 21 | | 1 2 | Bicar-
bonate
(HCO ₂) | anch roa | 91 | nch Hou | % | h house | 32 | aleno Mo | 94 | tes High | 41 | ek above | 38 | | Sodium | and po-
tassium
(Na+K) | Stockton Wash above Cluff Ranch road crossing near Artesia, Ariz. | 16 | Cuff Wash at Rays Ranch House near Artesia, Ariz. | 8.6 | 76 Wash at 76 Ranch house near Artesia, Ariz. | 8.7 | Noon Creek at edge of Pinaleno Mountains near Artesin, Ariz. | 12 | Noon Creek at United States Highway 666 near Artesia, Ariz. | 01 | North Fork of Noon Creek above dam near Artesia, Ariz. | 22. | | | slum
(Mg) | ash abov | 7.4 | Wash a | 4.4 | Wash a | 5.2 | ek at ed | 2.2 | sek at U | 2.6 | Fork of | 6.1 | | | cium
(Ca) | kton W | 58 | Cuff | 10 | 12 | 01 | oon Cre | 01 | Yoon Cre | 12 | North | 13 | | Specific
con- | duct-
ance
(K×10 ³
at 25°C.) | Stor | 24.8 | | 12.2 | | 11.3 | | 10.3 | _ | 10.8 | | 10.9 | | | dis-
charge
(second
feet) | | | | | | | | | | | | | | | Date sampled | | Mar. 4, 1941 | | Mar. 4, 1941 | | Mar. 4, 1941 | | Mar. 6, 1941 | | Mar. 6, 1941 | | Mar. 5, 1941 | | | Anal-
ysis
No. | | 828 | | 827 | | 828 | | 88 | | 830 | <u> </u> | 831 | | Ařiz. | | |----------|--| | Arteĝia, | | | near | | | ll way | | | ii spi | | | t dar | | | Creek a | | | Noon | | | Fork of | | | South | | | | | | | | • | | ā | ith For | s of Noo | n Creek | South Fork of Noon Creek at dam spillway neaf Artesia, Ariz. | Ш waў п | ear Arte | SIS, ATIZ | • | | | | | | | |-----|--------------------------|--------------------------------|-----|----------------------------|---------|-----------|------------|---|----------|--------------------------|-----------|-----------|---|------------|-------|-----|----|----| | × | 832 | Mar. 5, 1941 | | 10.8 | 14 | 6.7 | 92 | 39 | 83 | 69 | | | | - 67 | 0.09 | 29 | 35 | | | | - | | - | | Marij | ilda Was | th at picn | Marijilda Wash at picnic grounds near Safford, Ariz. | s near S | lafford, | Ariz. | | | | | | | ļ | | ∞ | 833 | Mar. 6, 1941 | | 9.4 | 10 | 4.4 | 4.5 | 34 | 8 | 8 | | | | 29 | 0.08 | 43 | 15 | 19 | | ł | | | | Mari | illda W | ash at U | nited Sta | Marijilda Wash at United States Highway 666 near Safford, Ariz. | way 666 | near Sa | fford, Ar | , si | | | | | - | | | Ι ∞ | 834 | Mar. 6, 1941 | | 20.5 | 41 | 3.1 | 33 | 20 | £3 | z | | | | 139
139 | 0. 19 | -84 | 7 | 29 | | ı | | | | Grav | eyard V | Jash at e | dge of Pi | Graveyard Wash at edge of Pinaleno Mountains near Safford, Ariz. | ountain | is near S | afford, A | rtiz. | | | | | - | | | ∞ | 835 | Mar. 11, 1941 | | 13.2 | 16 | 86 | V 10 | 45 | 92 | 4 | | | | 92 | 0. 10 | 74 | 37 | | | 1 | | | | | 5 | raveyard | Wash at | Graveyard Wash at mouth near Safford, Ariz. | ear Saff | ord, Aria | .: | | | | | | | | | ۱ ~ | 836 | Sept. 10, 1941 | 2 | 92.7 | 99 | 15 | 011 | 227 | 84 | 160 | 1.7 | 2.5 | | 513 | 0.70 | 226 | 40 | 52 | | l | | | | Left-] | Hand C | anyon at | edge of 1 | Left-Hand Canyon at edge of Pinaleno Mountains near Safford, Ariz. | Mountai | ins near | Safford, | Ariz. | | | | | | | | 1 ~ | 837 | Mar. 5, 1941 | | 15.8 | 14 | 7.4 | 7.4 | 40 | 40 | 20 | | | | 96 | 0.13 | 65 | 33 | 50 | | ı | | | | Left-Ha | nd Cany | on abov | e junction | Left-Hand Canyon above Junction with Graveyard Wash near Safford, Ariz. | ауеуаго | Wash I | near Saff | ord, Ariz | • | | | | • | | | 1 | 838 | Mar. 5, 1941. | 0.1 | 16.1 | 14 | 8.3 | 2.7 | 37 | 98 | æ | | | | 84 | 0.11 | 8 | 39 | « | | ì | | | | | | Smit | ryille Car | Smithville Canal near Thatcher, Ariz. | hatcher | , Ariz. | | | | | | | - | | | 1 | 888
841
842
842 | Sept. 16, 1943.1 | | 152
35.7
117
91.1 | 70 | 19 | 165 | 274 | 98 | 280
8.8
206
148 | 1.6 | 2.5 | | 685 | 0.93 | 252 | 58 | 69 | | 1 | SZ. | See footnotes at end of table. | | | | | | | | | | | , | | | | | | Chemical character of the water of tributaries of and diversions from Gila River between the mouth of Bonita Creek near Solomonsville, Ariz., and the Southern Pacific Railroad bridge at Calva, Ariz.—Continued | | Per- | cent
sodi- | | 73 | 57 | | 78 | | 36 | | 19 | |---------------------------------|----------------------|--|--|------------------------|----------------------
---|---------------|---|---------------|--|---------------| | | ess as | Non-
car-
bon-
ate | | 26 | 168 | | = | | 8 | | 26 | | | Hardness as
CaCOs | Total | | 284 | 610
203
180 | | 34 | | 35 | | 28 | | | Dissolved | Tons
per
acre-
foot | | 1.65 | 2.19 | | 0.08 | | 0.09 | | 0.11 | | | Dissolos
Sol | Parts
per
mil-
lion | | 1, 212 | 1, 610
529
467 | | 56 | | -64 | | 82 | | | | Borate
(BO ₃) | | 7.5 | | | | | | riz. | | | | į. | trate
(NO ₃) | | 7.8 | 38 5.0 | | | | | tcher, A | | | | Ē | Eing-
ride
(F) | riz. | 1.9 | | riz. | | riz. | | near Th | | | [uc | | | tcher, A | 415 | 505
151
140 | tcher, A | 60 | tcher, A | 8 | eservoir | 4 | | er milli | 3 | fate
(SO ₄) | ear The | 186 | 219
60
50 | ear Tha | 30 | ear Th | 23 | below 1 | 32 | | in parts p | į | bonate
(HCO ₃) | steway n | 314 | 538
236
205 | servoir n | 28 | servoir n | 33 | k ¾ mile | 40 | | [Analyses in parts per million] | Sodium | and po-
tassium
(Na+K) | Smithville Canal wasteway near Thatcher, Ariz. | 352 | 369
124
110 | Frye Creek above reservoir near Thatcher, Ariz. | 6.2 | Frye Creek below reservoir near Thatcher, Ariz. | 9.5 | Frye Cree | 6.1 | | | | sium
(Mg) | ithville | 23 | 44
13
12 | e Creel | 1.7 | re Cree] | 1.3 | itering] | 5.7 | | | 7 | cium
(Ca) | Sm | 99 | 172
60
52 | Fr | П | Fr | 12 | nyon en | 14 | | | Specific
con- | duct-
ance
(KX10 ⁵
at 25°C.) | ! | 212 | 269
92.2
80.1 | | 8.9 | | 9.7 | Unnamed canyon entering Frye Creek ¾ mile below reservoir near Thatcher, Ariz. | 13.0 | | | Mean | charge
(second-
feet) | | | | | | | | Un | | | | | Date sampled | | Sept. 9, 13, 20, 19431 | Dec. 13, 1944 | | Mar. 11, 1941 | | Mar. 11, 1941 | | Mar. 11, 1941 | | | | ysis
No. | | 843 | 846
846
847 | | 848 | | 849 | | 820 | Dodge-Nevada Canal near Gienbar, Ariz, | | | | | | 9 | Part Annual Part | | | | | | | | | | , | 4.8.4 | |---------------------------------|-------------------------------|------|--------------------------|----------|----------|------------------|---|-----------|-----------------------------|----------|-----------------------|-----|--------|------|------------|------|----------| | 851
852
853
853
854 | Sept. 17, 1943 1 | | 339
109
469
116 | 99 | 21 | 948 | 220 | 353 | 795
218
1, 240
208 | 3.9 | 7.1 | 4.2 | 2,750 | 3,74 | 251 | 70 | 68 | | | | | | Centr | al Wash | at Dodge | Central Wash at Dodge-Nevada Canal near Pima, Ariz. | Canal n | ear Pim | a, Ariz. | | | | | | | | | 855 | July 11, 1941. | 2.0 | 283 | 64 | 41 | 528 | 570 | 235 | 520 | 3.2 | 27 | | 1, 699 | 2.31 | 328 | .0 | 7 | | | | | | | Ash Cr | eek below | Ash Creek below reservoir near Pima, Ariz. | near Pi | ma, Ariz | | | | | | | | | | 856
857 | Feb. 13, 1940
Mar. 7, 1941 | | 30.1 | 13 | 7.4 | 933 | 54 | 17 40 | 43 | | | | 170 | 0.23 | 48 | - 31 | 48 | | | | | | As | h Creek | : 1/8 mile a | Ash Creek 1/8 mile above mouth near Pima, Ariz. | th near | Pima, A | riz. | | | | | | | | | 858 | Sept. 11, 1941 | | 160 | 89 | 22 | 251 | 348 | 102 | 285 | 1.7 | 10 | | 116 | 1.24 | 780 | 0 | 88 | | | | | , | | Ash | Creek at | Ash Creek at mouth near Pima, Ariz. | ar Pima | , Ariz. | | | | | | | | | | 859 | Apr. 25, 1941.
Sept. 11 | 14.7 | 74. 6
194 | 44 | 14
25 | 98
313 | 201 | 59
127 | 109
352 | 2.4 | 13 | | 1, 111 | 0.58 | 167
297 | 3 | 56
70 | | | | | | Cotto | nwood | Wash at | Cottonwood Wash at Granite Gorge near Pima, Ariz, | orge nee | ır Pima, | Ariz. | | | | | | | | | 881 | Jan. 15, 1941. | | 28.9 | 98 | 12 | 21 | 103 | 49 | 10 | | 1
1
2
1
1 | | 164 | 0.22 | 124 | 40 | 17 | | | | | රී | t ton wo | d Wash | 1 mile be | Cottonwood Wash 1 mile below Granite Gorge near Pima, Ariz. | lite Gor | ge near | Pima, Ar | z. | | | | | | | | 862 | Jan. 15, 1941 | | 29.3 | 32 | 13 | 8.9 | 102 | 20 | 13 | | | | 991 | 0.23 | 133 | 020 | 13 | | ď | Son footmoton of ond of toble | | | | | 1 | | | | | | | | | | - | | See footnotes at end of table. Chemical character of the water of tributaries of and diversions from Gila River between the mouth of Bonita Creek near Solomonsville, Ariz., and the Southern Pacific Railroad bridge at Calva, Ariz.—Continued | | Per- | cent
sodi-
um | | œ | | 18 | | 36 | | 15 | | 0.5 | |---------------------------------|----------------------------------|--------------------------------------|---|--------------------------------|--|---------------|--------------------------------|---|----------------|---------------|---|--------------------------------| | | ess as
O ₃ | Non-
car-
bon-
ate | | 25 | | 22 | | 13 | | 18 | | 22.22 | | | Hardness as
CaCO ₃ | Total | | 09 | | 88 | | 164 | | 45 | | 42.83 | | | lved
ds | Tons
per
acre-
foot | | 0.10 | | 0. 12 | | 0.16 | | 0. 18 | | 0.07 | | | Dissolved
solids | Parts
per
mil-
lion | | 72 | | 91 | | 279 | | 82 | | 48
73 | | | | Borate
(BO ₃) | | | | | | 2.0 | z. | | | | | | ž | trate
(NO ₃) | | | Ariz. | | | 1.7 | Pima, Ar | | | | | | į. | ride . | lma, Ariz | | ır Pima, | | | 0.8 | sh near | | | | | on] | 1,1 | (C) | n near P | 61 69 | nyon ne | 20 | Ariz. | 10
41
147
106 | 234
wood Wa | 4 | lma, Ariz | 410 | | per milli | | fate
(SO ₄) | d Canyo | 25 | Hand Ca | 29 | Pima, | 30 43 | Cotton | 8 | g near P | 18 | | in parts | Ä | bonate
(HCO ₃) | eft-Han | 47 | w Left- | 55 | Wash a | 185 | tion with | 32 | l crossing | 40 | | [Analyses in parts per million] | Sodium | and po-
tassium
(Na+K) | Cottonwood Wash above Left-Hand Canyon near Pima, Ariz. | 2.5 | Cotton wood Wash 3 miles below Left-Hand Canyon near Pima, Ariz. | 6.8 | Cotton wood Wash at Pima, Ariz | 13 43 | | 3.7 | Taylor Canyon at road crossing near Pima, Ariz. | 0.1
5.7 | | | | sium
(Mg) | ood Was | 6.1 | Wash 3 r | 6.1 | రి | 12 | anyon ab | 8.4 | or Canyo | 5.2 | | İ | | citum
(Ca) | Cottonw | 18
14 | poom ue | 17 | | 22 46 | Hand C | 22 | Tayl | 9.0 | | | Specific
con- | duct-
ance
(KX10¢
at 25°C.) | | 12.0 | Cott | 13.5 | | 19. 5
49. 0
89. 5
69. 7 | 138
Left-] | 9.6 | | 9.3 | | | Mean | charge
(second-
feet) | | | | | | | | | | | | | | Date sampled | | Mar. 14, 1940
Feb. 28, 1941 | | Feb. 28, 1941 | | Feb. 28, 1941
Sept. 26, 29-30, 1943
Nov. 4
Oct. 30, 1944 | Feb. 14 | Feb. 28, 1941 | | Nov. 28, 1940
Feb. 28, 1941 | | i | lou 4 | ysis
No. | | 863
864 | | 865 | | 866
868
869 | | 178 | | 872
873 | Carter Canyon above junction with Cottonwood Wash near Pima, Ariz. | ĺ | | | Carter Ca | nyon at | unf ago | Carter Canyon acove junction with Cottonwood wash near rima, Ariz | Cotton | WOOU W | near near | Fima, / | . II. | | | | | | | | |---------------------|--|------|------------------------------|----------------------|------------------------|---|--------------------------|------------------------|------------------------|----------|-------|-----|--------------------------|--------------------------------|------------------------|---------------------|----------------|--------| | 874 | Feb. 28, 1941 | | 9.5 | 9.0 | 3.9 | 5.5 | 31 | 8 | က | | | | 56 | 0.08 | 38 | 13 | 34 | | | 1 | | | | | Curtis | Curtis Canal near Glenbar, Ariz. | r Glenba | r, Ariz. | | | | | | | | | | 23.142 | | 875 | Sept. 10, 14, 21, 24, 1943 1. | | 376 | 89 | | 701 | 326 | 484 | 790 | 2.0 | 5.0 | 10 | 2, 260 | 3.07 | 371 | 104 | 98 | | | 20-00 | June 19, 22, 26, 1944 5
Sept. 7, 18, 25 | | 69.9 | 72 | 49 | 1,170 | 278 | 911 | 1,270 | 2.0 | 8.0 | 4.8 | 3, 630 | 4.94 | 442 | 214 | 28 | | | 1 | | | -! | Mai | kham V | Markham Wash at sheep ranch near Eden. Ariz. | eep rancl | h near F | den. Ar | iz. | | | | | - | | | OF 1 | | 879 | Mar. 5, 1940 | | 51 | 94 | 8 | 83 | 213 | 29 | 19 | | | | 285 | 0.39 | 222 | 84 | 18 | JUAF | | 1 | | | | | Mar | Markham Wash near Eden, Ariz. | sh near I | den, A | iz. | | | | | | | | | | | 880 | Feb. 13, 1940. | | 18.0 | 88 | 41 | V10 | 88 | 38 | 100 | | | | 100 | 0.14 | 122 | 46 | | WA | | 1 | | | | | Mattl | Matthews Wash near Glenbar, Ariz. | h near G | len bar, | Ariz. | | | | | | | | | LNS | | 8883
8884
885 | Feb. 23, 1940 | 0.5 | 175
73. 2
71. 8
169 | 65
28
12
24 | 16
11
9.4
7.6 | 222
122
138
346 | 199
239
214
329 | 115
84
68
168 | 385
66
87
275 | 0.9 | 1.5 | 2.5 | 878
431
420
991 | 1. 19
. 59
. 57
1. 35 | 228
115
68
91 | . 65
0
0
0 | 68
89
89 | | | 1 | | | Under | Wood W | ash belo | Underwood Wash below junction with Tripp Canyon near Pima, Ariz. | n with T | ripp Ca | nyon nes | ır Pima, | Ariz. | | | | | | | | | 988 | Jan, 15, 1941 | | 19.6 | 21 | 8.7 | 6.9 | 89 | 40 | 7 | | | | 115 | 0.16 | - 88 | 37 | 15 | | | 1 | | | | ď | derwood | Underwood Wash at reservoir near Pima, Ariz. | reservoir | near P | ma, Ari | 12 | | | | | | | | | | 887 | Jan. 15, 1941 | 0.02 | 20.1 | 21 | 9.2 | 9.9 | 65 | 44 | 6 | | | | 125 | 0.17 | 06 | 37 | 19 | | | ā | See footnotes at end of table. | | | | | | | | | | | | | | • | | | | Chemical character of the water of tributaries of and diversions from Gila River between the mouth of Bonita Creek near Solomonsville, Ariz., and the Southern Pacific Railroad bridge at Calva, Ariz.—Continued Facilic Kauroda oriage at Cawa, Ariz.—Continu | | Per- | cent
sodi-
um | | 01 | | |
35.55 | | 19 | | | |---------------------------------|---------------------|---|--|---------------|--|-------------------|-------------|--|----------------------------|--|------------------------------| | | | Non-
car-
bon-
ate | | 36 | | - | 00 | | 1, 570 | | 335 | | | Hardness a
CaCOs | Total | | | | | 274 | | 1,760 | | 522 | | | Dissolved solids | Tons
per
acre-
foot | | 0.15 | | | 3.01 | | 7.87 | | 2.54 | | | Disso
soli | Parts
per
mil-
lion | | 101 | | | 2,210 | | 5, 790 | | 1,866 | | | | Borate
(BO ₃) | i | | | | 4, 5 | | 1.0 | | | | | į | trate
(NO ₃) | iz. | | | | 2.0 | | 28 | | 6.9 | | | Ē | ride
(F) | Pima, Ar | | Ariz. | | 1.2 | as, Ariz. | 1.1 | | | | [oo] | | ride
(CI) | ng near | 2 | Glenbar, | 755 | 830 | rt Thom | 2, 420
82 | mas, Ariz | 735
110
82 | | per mill | 7 | fate
(SO ₄) | d crossi | 35 | al near | 1 | 426 | ıal at Fo | 1,180 | ort Tho | 341 | | in parts | Đ. | bonate
(HCO ₃) | anch roa | 63 | ated Can | | 285
193 | ated Car | 234 | al near F | 228 | | [Analyses in parts per million] | Sodium | and po-
tassium
(Na+K) | Tripp Canyon at Smith Ranch road crossing near Pima, Ariz. | 4.7 | Fort Thomas Consolidated Canal near Glenbar, Ariz. | | 727 | fort Thomas Consolidated Canal at Fort Thomas, Ariz. | 1, 430 | Colvin-Jones Canal near Fort Thomas, Ariz. | 489 | | _ | Mag- | Sium
(Mg) | nyon at | 9.5 | Chomas | | 8.7 | Thomas | 180 | Jolvin-J | 42 | | i | 7 | cium
(Ca) | ripp Ca | 30 | Fort | | 37 | Fort | 410 | | 140 | | | Specific
con- | duct-
ance
(K×10 ^s
at 25° C.) | _ | 19, 4 | | 357 | 372
59.6 | | 384
148
894
68. 5 | | 318
93. 1
884
62. 6 | | | Mean | charge
(second-
feet) | | | | | | | | | | | | | Date sampled | | Jan. 15, 1941 | | Sept. 17, 1943 1. | | | Sept. 17, 1943 1 | | July 16, 17, 23, 27, 1943 1 | | | 3 | ysis
No. | | 888 | | 688 | 891 | | 893
895
895
896 | | 898
899
900 | | Ariz. | |---------| | Гһотав, | | Fort | | near | | Rock | | Black | | ä | | Vash | | ock / | | S
E | | Ba | | 901 | Jan. 17, 1941
Mar. 26, 1944 | | 11.6
9.9 | 12 | 1.7 | 12 | 26
17 | 31
28 | 2.5 | 0. | . 2 | 92 | 0.10 | 37 | 16 | 40 | |-------------------|---|--|--|----------------------------------|---------|---|------------------|---------------------------|---|---|-----------|----------------------------|----------------|------------------|----|----| | | | | Black | Rock V | ash 5 n | niles belo | w Black | Rock ne | ar Fort | Black Rock Wash 5 miles below Black Rock near Fort Thomas, Ariz. | | | | | | | | 903 | Jan. 17, 1941 | | 12.4 | 12 | 1.7 | 13 | 29 | 32 | 9 | | | 64 - | 0.11 | 37 | 13 | 44 | | | | | | | Black | Black Rock Wash at Fort Thomas, Ariz. | h at Fort | Thoma | s. Ariz. | | | | | | | | | 904
905
906 | Feb. 23, 1940
Jan. 17, 1941
Sept. 26, 1943 | 0.1 | 26
14.8
51.5 | 17 28 | 2.6 | 10 | 168
45
212 | 80.2
33.3 | 1 5 47 | | | 293 | 0.12 | 114
53
132 | 16 | 29 | | | | | | Holy | oak Wa | Holyoak Wash at highway 70 near Geronimo, Ariz. | hway 70 r | lear Gel | onimo, | Ariz. | | | | | | | | 406 | Aug. 10, 1940 | | 22 | 98 | 7.9 | 7.6 | 124 | 20 | - | | | 128 | 0. 17 | 108 | 9 | 13 | | | | | | 89 | dwin W | Goodwin Wash at goat camp near Geronimo, Ariz. | at camp r | ear Ger | onimo, | Ariz. | | | | | | | | 806 | Mar. 6, 1940 | | 83 | 31 | | | 92 | 04 | r. | | | | | 06 | | | | | | | | | ğ | Goodwin Wash at Geronimo, Ariz. | sh at Ger | onimo, | Ariz. | | | | | | | | | 909 | Feb. 23, 19401 | | 34
16 | 28 | | | 213
62 | 17 32 | 60 | | | | | 159 | | | | | | Unna | med was | h at Sot | thern I | acific Ra | llroad bri | dge, 4.7 | miles w | Unnamed wash at Southern Pacific Raliroad bridge, 4.7 miles west of Geronimo, Ariz. | no, Ariz. | | | | | | | 911 | Aug. 10, 1940 | | æ | | 8.3 | | 211 | 14 | 9 | | | | | 180 | | | | ZZZZ
- ~ ~ • | 1 Maximum concentration for period July 1, 1943, to Sept. 30, 1943, 2 Minimum concentration for period July 1, 1943, to Sept. 30, 1944, 8 Maximum concentration for period oct. 1, 1943, to Feb. 29, 1944, Minimum concentration for period Oct. 1, 1943, to Feb. 29, 1944. | y 1, 1943,
y 1, 1943,
t. 1, 1943,
t. 1, 1943, | to Sept. 3
to Sept. 3
to Feb. 29 | 0, 1943.
0, 1943.
9, 1944. | | | 2023 | Maxim
Minim
At high | Maximum concentrati
Minimum concentrati
7 At high stage of flow.
8 At low stage of flow. | Maximum concentration for year ended Sept. 30, 1944. Minimum concentration for year ended Sept. 30, 1944. At high stage of flow. At low stage of flow. | ear ended | Sept. 30, 3
Sept. 30, 1 | 1944.
1944. | | | | | Analysis No. | Source | Location | Date sampled | Depth of well (feet) | Yield (gallons
per minute) | Temperature (°F.) | |---------------------------------|--|--|---|-----------------------|-------------------------------|--------------------------| | 912 | Seepage zone in conglomerate, Gila
River Canyon. | T. 6 S., R. 28 E.:
N½SE½ sec. 28 | Sept. 9, 1941 | | 20 | | | 913
914
915 | Seepage from mouth of wash
Brown Canal Co. welldo. | NE¼NE¼ sec. 29
NE¼NE¼ sec. 31
do | June 17, 1940
July 29, 1941 | 57
57 | 20
 | 67
67 | | 916
917 | Clonts irrigation well:
USGS 455
USGS 453 | NE4SE4 sec. 31
NW4SE4 sec. 31
T 6 S B 27 E | Mar. 13, 1944 | 70 | | | | 918
919
92 0 | Gatlin Bros. well in volcanic strata-
Ruben Sanchez irrigation well-
Driven observation well, USGS | NE4SE4 sec. 31
NW4SE4 sec. 31
T.6 S., R. 27 E.;
NW4SW4 sec. 16
SW4NE4 sec. 35
SE4NE4 sec. 35 | Feb. 17, 1941
July 15, 1940
May 23, 1940 | 50
52
14 | | 76 | | 921
922
923
924 | 429. USGS 430. USGS 431. Seepage at mouth of Yuma Wash. Small seep in right bank of Gila River. | do
NE¼SE¼ sec. 35
SE¼SE¼ sec. 35
SW¼SE¼ sec. 35 | do
Sept. 9,1941 | 14
14 | 5
1 | | | 925
926
927
928
929 | Louis Michelena unused well | T. 7 S., R. 27 E.:
SEYNWY sec. 1
NEYNEY sec. 2
SWYSWY sec. 2
SEYNEY sec. 3
NEYSEY sec. 4 | Feb. 27, 1942
June 6, 1940
Sept. 23, 1940
Mar. 30, 1944
June 17, 1940 | 33
18
300
81 | 1. 2 | 96
 | | 930
931
932
933
934 | do. Mrs. E. L. Tidwell well. Mrs. E. L. Tidwell irrigation well. W. F. Tidwell irrigation well. do. | do
SE\sE\sE\sec. 7
do
NW\sE\sec. 8
do | June 20, 1940
Feb. 27, 1942
June 20, 1940
June 17, 1940
June 20, 1940 | 81
21 | | 68

65
67
67 | | 935
936
937
938
939 | do | dodo | July 30, 1941
July 12, 1940
July 8, 1941
Aug. 28, 1941
June 1, 1944 | 69
69
65 | | 68
68 | | 940 | San Jose Canal Co. well, USGS 689. | SW1/4SW1/4 sec. 16 | July 11, 1940 | 11 | | | | 941
9 42 | Seepage from gravel bar in Gila
River channel. | do
NW¼NE¼ sec. 17. | July 21, 1941
Sept. 10, 1941 | 115 | 5 | 70 | | 943
944 | San Jose Canal Co. well, USGS 690
USGS 691 | SE¼SE¼ sec. 17
NE¼SE¼ sec. 17 | July 8, 1940
July 11, 1940 | 100 | | | | 945
946 | S. L. Claridge irrigation well,
USGS 693.
USGS 694 | NW\\\SE\\\\\ sec. 17
NE\\\\\SW\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | July 12, 1940 | 71 | | 65
67 | | 947
948
949 | USGS 695
USGS 695
USGS 697 | SE¼SE¼ sec. 18
do
SW¼SE¼ sec. 18 | Mar. 27, 1944
July 12, 1940 | 74 | | 67 | | 950 | Driven observation well, USGS | SW1/NW1/4 sec. 18 | May 18, 1940 | 13 | | | | 951
952 | 699.
USGS 701
Seepage zone in right bank of Gila
River. | NW¼SW¼ sec. 18
SE¼NW¼ sec. 18 | May 20, 1940
Sept. 10, 1941 | 14 | 40 | | | 953
954 | William Waldron irrigation well | NW¼NW¼ sec. 19
do | June 18, 1940
Mar. 30, 1944 | | | 67 | | 955
956
957
958
959 | L. Layton irrigation well | NW\NE\\ sec. 20
NE\\\NE\\\ sec. 20
NE\\\\NW\\\ sec. 20
do
NW\\\\NW\\\ sec. 30
SE\\\\ SE\\\\ sec. 30 | Aug. 8, 1940
Aug. 6, 1941
July 12, 1940
Mar. 27, 1944
Feb. 27, 1942 | 85
81
81
39 | | 70
70
69 | | 960 | L. Layton unused well | SE¼ SE¼ sec. 30 | ldo | 42 | | l | between the mouth of Bonita Creek near Solomonsville and the Southern Pacific Railat Calva [Analyses in parts per million] | Analysis No. | Source | Location | Date sampled | Depth of well (feet) | Yield (gallons
per minute) | Temperature (°F.) | |--------------|---|---|--|----------------------|-------------------------------
-------------------| | 961 | Big Spring in upper Big Spring,
Wash. | T. 5 S., R. 26 E.:
SE¼ sec. 4 | Feb. 10, 1941 | | 100 | 80 | | 962 | J. A. Peterson irrigation well,
USGS 412. | T. 6 S., R. 26 E.:
NW¼SW¼ sec. 31 | July 8, 1940 | | | 68 | | 963
964 | F. Skinner irrigation well, USGS
413. | SW¼SW¼ sec. 31 | Mar. 31, 1944
July 29, 1940 | 41 | | | | 965
966 | USGS 418
Smith Dairy Spring | SE48W4 sec. 31
SW48W4 sec. 32
T. 7 S., R. 26 E.:
SE48E4 sec. 5 | Mar. 31, 1944
Mar. 24, 1941 | | | | | 967
968 | Graham Canal Co. well, USGS 551 | SE¼SE¼ sec. 5
SW¼SE¼ sec. 5
SW¼SE¼ sec. 5
SE¼SW¼ sec. 5
SW¼SW¼ sec. 5 | Mar. 22, 1940
June 18, 1940 | 32
32 | | 64 | | 969 | USGS 554 | SW14SE14 sec. 5 | [do | 59 | | | | 970 | USGS 555
Driven observation well, USGS | SE14SW14 sec. 5 | May 11, 1940 | 54 | | | | 971 | 570. USGS | SW14SW14 sec. 5 | May 11, 1940 | 10 | | | | 972 | USGS 573 | do | May 6, 1940 | 1 28 | | | | 973 | USGS 573
USGS 573 | do | do | 1 32 | | | | 974 | USGS 573 Bored observation well. Driven observation well, USGS | do | Nov. 26, 1943 | 1 35 | | | | 975
976 | Bored observation well | do | Nov. 26, 1943 | | | | | 976 | 576. | do | May 15, 1940 | 1 12. 9 | | | | 977 | do | do | do | 1 20.3 | | | | 978
979 | do | do | Nov. 9, 1944
May 17, 1940
June 18, 1940 | 1 24 | | | | 979 | USGS 579 | <u>do</u> | Nov. 9, 1944 | | | 66 | | 980
981 | Graham Canal well, USGS 583 | NW¼SW¼ sec. 5
SE¼SE¼ sec. 5 | May 17, 1940 | 21 | | | | 982 | J. A. Peterson irrigation well. | SE¼SE¼ sec. 5
SW¼NE¼ sec. 6 | June 18, 1940 | 41 | | 65 | | 983 | USGS 558. | _ | | 48 | | 66 | | 984 | do
USGS 559 | do
NE¼NW¼ sec. 6
SE¼SE¼ sec. 6 | Aug. 13, 1941 | 50 | | 66 | | 985 | Driven observation well, USGS | SELSEL sec 6 | May 17, 1940 | 14 | | | | 986 | 577. | do | Aug. 26, 1940 | 14 | | 69 | | 987 | R. A. Smith irrigation well | NE¼NE¼ sec. 6 | A 110 10 1940 | | | 63 | | 988 | do | dó | Aug. 13, 1941
Mar. 31, 1944
Sept. 11, 1941 | | | 66 | | 989 | Graham Canal Co. well, USGS 646. | SE¼SW¼ sec. 5 | Mar. 31, 1944 | 106 | | | | 990 | Seepage in Gila River channel | SW14NW14 sec. 6 | Sept. 11, 1941 | | | [| | 991 | Irrigation drain entering Gila
River. | SE¼SW¼ sec. 5
SW¼NW¼ sec. 6
SW¼SE¼ sec. 6 | do | | 25 | | | 992
993 | Pete Ramirez irrigation welldodo | NW¼SW¼ sec. 7 | July 19, 1940 | 98
98 | | 65 | | 993 | Ed. Hoopes irrigation well | SE¼SW¼ sec. 7 | June 20 1940 | 84 | | 66 | | 995 | do | do | Mar 14, 1944 | 84 | | | | 996 | Henry Layton irrigation well | SE¼NE¼ sec. 7 | Oct. 1, 1940
June 20, 1940
Mar 14, 1944
Mar. 20, 1944 | | | | | 997
998 | Seepage from Prina Slough under
Safford bridge. | NE¼NE¼ sec. 7 | | | 4 | | | 998 | Seepage entering Gila River at
left bank.
Driven observation well, USGS | NW¼SW¼ sec. 8 | May 22, 1940 | 29 | 4 | | | | 564. | | <u> </u> | | | | | 1000
1001 | USGS 565-
USGS 565-A | SW¼NW¼ sec. 8
do | May 16, 1940
Feb. 24, 1941 | 13. 6
13 | | | | 1002 | USGS 566 |
 do | May 16 1040 | 14 | ļ | | | 1002 | USGS 566-A | ob | May 16, 1940
Feb. 24, 1941 | 12 | | | | 1004 | USGS 567 | do | May 16, 1940 | 14 | | | | 1005 | USGS 567
USGS 567A | NW14NW14 sec. 8 | May 16, 1940
Feb. 24, 1941 | 14 | | | | 1006 | USGS 568 | do
NW¼NW¼ sec. 8
SW¼NW¼ sec. 8 | May 16, 1940 | 14 | | | | 1007 | USGS 568-A | do | Feb. 22, 1941
Nov. 9, 1943
May 16, 1940
Feb. 22, 1941
Nov. 9, 1943 | 13 | | } | | 1008 | TISGS 568-A | do | Nov. 9, 1943 | 13 | | | | 1009 | USGS 569
USGS 569-A | do
NW¼NW¼ sec. 8
do | May 16, 1940 | 21 | | | | 1010 | USGS 569-A | do | Feb. 22, 1941 | 13 | | | | 1011 | USGS 569-A | do | INOV. 9, 1943 | 13 | I | | Depth at which sample was collected when well was driven. between the mouth of Bonita Creek near Solomonsville and the Southern Pacific Railat Calva—Continued [Analyses in parts per million] | | | | | | | s in pa | | | | | | | | | |--|--------------------------|----------------|----------------------------------|--------------------------|-------------------|-------------------|------------------------------|---------------|--------------|--------------------------------------|-------------------------|--|----------------|---------------------------------| | Specific conduct-
ance (K×10° at
25° C.) | Ca) | Magnesium (Mg) | Sodium and po-
tassium (Na+K) | Bicarbonate (HCO3) | 04) | CI) | F) | Nitrate (NO3) | 03) | Disso
soli | olved
ids | Total hardness
as CaCO ₃ | Percent sodium | ço. | | \$€. | Calcium (Ca) | sin | n Cha | Q E | Sulfate (SO4) | Chloride (Cl) | Fluoride (F) | e C | Borate (BO3) | n n | oot |)aC | t so | Analysis No. | | ciff
foc
5° C | loiu | gne | liun
siun | ca. | fate | lori | loric | rat | rate | ts r | Tons per
acre-foot | tal l | cen | alys | | Spe | CaJ | X X | Soci | Bi | Sul | СЪ | Flu | Ë | Bol | Parts per
million | Ton | Tol | Per | Αn | | 45. 3 | 39 | 30 | 24 | 274 | 26 | 11 | . 6 | 4. 3 | | 270 | . 37 | 221 | 19 | 961 | | 270 | | | | 440 | 266 | 555 | | | | | | 375 | | 962 | | 356
290 | 209 | 61 | 495 | 418
434 | 360
280 | 785
570 | 2. 2 | 22 | .1 | 2, 140 | 2.91 | 772
525 | 58 | 963
964 | | 304 | 204 | 48 | 405 | Ì | 306 | | 1.9 | 12 | .1 | 1, 820 | 2.48 | 706 | 55 | 1 | | 391 | 56 | 48
2. 2 | 807 | 488
227 | 416 | 605
900 | 5. 5 | | | 2, 299 | 2. 48
3. 13 | 149 | 92 | 965
966 | | 104
128
270
202 | | | | 225
255 | 80
135 | 188
245 | | | | | | 168
285 | | 967
968
969
970
971 | | 270 | | | | 255
396
324 | 135
420
300 | 245
560
430 | | | | | | 472
450 | | 969 | | 320 | | | | | | 604 | | | | | | | | 971 | | 290 | | | | | | 624
640 | | | | | | | | 972 | | 290
320
290
272 | | | | | | 628 | | | | | | | | 972
973
974 | | 272
330 | | | | | | 530
690 | | | | | | | | 975
976 | | 950 | | | | | | 090 | | | | | | | | | | 300 | | | | | | 675
675 | | | | - - | | | | 977
978
979
980
981 | | 310
346 | | | | | | 735
480 | | | | | | | | 979 | | 250
234 | | | | 232 | 480 | 480
520 | | | | | | 420 | | 980
981 | | 235 | | | | 207 | 300 | 565 | | | | | | 420 | | 982 | | 283 | 208
129 | 50 | 361 | 542 | 242 | 570 | 2. 0
1. 1 | 6.0 | | 1, 706 | 2.32 | 725 | 52 | 983 | | 283
257
260 | 129 | 50 | 366 | 320 | 241 | 570
570
494 | 1.1 | 5.0 | | 1, 520 | 2. 07 | 528 | 60 | 983
984
985 | | 238 | | | | | | 466 | | | | | | | | 986 | | 280 | | | | 448 | 340 | | | | | | | 488 | | ! | | 265 | 136 | 43 | 390
383 | 448
374
444 | 340
251
296 | 555
558 | 1. 2 | 7.4 | | 1,571 | 2. 14 | 516 | 62 | 988 | | 280
265
271
217 | 136
163
120
108 | 40
31 | 383
323 | 444
456 | 296
146 | 510
425
488 | 1. 2
1. 9
1. 2
1. 4 | 9.2 | 1.0 | 1, 571
1, 620
1, 271
1, 299 | 2. 14
2. 20
1. 73 | 488
516
572
427 | 59
62 | 987
988
989
990 | | 225 | 108 | 34 | 331 | 284 | 195 | 488 | 1.4 | 2.0 | | 1, 299 | 1.77 | 409 | 64 | 991 | | 209 | 87 | 36 | 265 | 476
298
275
472 | 60 | 370
392
355 | | | - | 1 005 | | 412 | | 992
993
994 | | 180 | | | | 275 | 138
160
172 | 355 | | | | 1,065 | 1. 45 | 412
365
285 | 61 | 993 | | 209
198
180
222
237 | 151
104 | 33
44 | 298
377 | 472
398 | 172
251 | 400
465 | 1. 1
1. 5 | 33
16 | .1 | 1, 320
1, 450 | 1.80
1.97 | 512
440 | 56
65 | 995
996 | | 317 | 97 | 42 | 548 | 450 | 246 | 690 | 3.0 | 1.5 | | 1,849 | 2. 51 | 415 | 74 | 997 | | 361 | 58 | 37 | 675 | 336 | 333 | 800 | 3.0 | 7.6 | | 2,079 | 2. 83 | 297 | 83 | 998 | | 230 | 39 | 21 | 410 | 321 | 179 | 444 | | | | 1, 251 | 1.70 | 184 | 83 | 999 | | 280
297 | 111 | 34 | 512 | 558 | 224 | 562
590 | 2.6 | | | 1, 749 | 2.38 | 417 | 73 | 1000
1001 | | 390
308 | 102
145 | 67
43 | 644
478 | 108
512 | 477
237 | 954
640 | 3.8 | | | 2, 297
1, 799 | 3. 12
2. 45 | 530
539 | 73
66 | 1002 | | 390
308
270
299 | 125 | 43 | 490 | 534 | 239 | 614
610 | 2.8 | | | 1,773 | 2. 41 | 489 | 69 | 1002
1003
1004
1005 | | 270 | | | | | | 600 | | | | | | | | 1006 | | 310
319 | 121 | 40 | 517 | 534 | 246 | 630
675 | 2.9 | | | 1,820 | 2.48 | 466 | 71 | 1007
1008 | | 300
300 | 65 | 34 | 578 | 484 | 257 | 610
630 | 2. 2 | | | 1,805 | 2.45 | 302 | 81 | 1009
1010 | | 318 | 107 | 45 | 542 | 416 | 291 | 680 | 2. 2
1. 9 | 27 | 10 | 1, 805
1, 900 | 2. 45
2. 58 | 452 | 81
72 | 1011 | | Analysis No. | Source | Location | Date sampled | Depth of well (feet) | Yield (gallons
per minute) | Temperature (°F.) | |--------------------------------------|---|--|---|-------------------------------|-------------------------------|-------------------| | 1012
1013
1014
1015 | Driven observation well—Continued USG
580. USG 580. Z. C. Prina irrigation well. Seepage from gravel bar in Gila River. | NE¼SW¼ sec. 8
do
NW¼SE¼ sec. 8
NE¼NE¼ sec. 8 | Nov. 19, 1943
July 13, 1940
Sept. 10, 1941 | 34
34
76 | | 68
 | | 1016 | Marvin Clifford and others irriga-
tion well. | SW¼SW¼ sec. 9 | Mar. 27, 1944 | | | | | 1017
1018 | Seepage in high-water channel of
Cila River along left bank.
Seepage from high-water channel
of Gila River along right bank. | SW¼SW¼ sec. 11
SE¼SE¼ sec. 11 | do | | | | | 1019
1020
1021 | Ted Tidwell domestic well. Driven observation well, USGS 587. do | SE¼SE¼ sec. 12
do | Feb. 27, 1942
May 21, 1940
Nov. 9, 1943 | 17
14
14 | | | | 1022 | Seepage in high water channel of
Cila River along right bank. | SW¼SE¼ sec. 12 | - | | | | | 1023
1024 | Driven observation well, USGS 588. | NE¼NE¼ sec. 13 | | 14
14 | | | | 1025
1026 | USGS 590_
Ed Claridge irrigation well, USGS 592. | do | Nov. 9, 1943
May 20, 1940
Mar. 23, 1940 | 14
95 | | 67 | | 1027
1028
1029
1030
1031 | do
do

USGS 593.
USGS 595.
USGS 595. | dodo
SE¼SW¼ sec. 13
do
SE¼SE¼ sec. 14 | June 20, 1940
July 19, 1941
June 18, 1940
Mar. 27, 1944
June 18, 1940 | 95
95
90
90
90 | | 66 | | 1032
1033
1034
1035
1036 | USGS 595
Union Canal Co. well, USGS 596.
USGS 598
USGS 599
USGS 599 | do | Mar. 30, 1944
June 18, 1940
Aug. 9, 1940
June 4, 1940
June 18, 1940 | 90
52 | | 65
66
65 | | 1037
1038
1039
1040
1041 | USGS 599
USGS 600
USGS 600
USGS 601
USGS 601 | do
SW¼NW¼ sec. 15
dodo | July 19, 1941
June 25, 1941
July 19, 1941
June 4, 1940
June 18, 1940 | 87
87 | | 65 | | 1042
1043
1044
1045
1046 | USGS 601 N. W. Stevenson irrigation well do Marvin Clifford irrigation well L. A. Nelson irrigation well | dodo | July 19, 1941
Mar. 3, 1943
Mar. 30, 1944
Apr. 14, 1944
May 25, 1940 | 104 | | | | 1047
1048
1049
1050
1051 | L. Fuller irrigation well, USGS 604_do_
USGS 605_
Pedro Salas domestic well_
Pat Cardon well_ | SW4SW4 sec. 16
do
NE4SW4 sec. 16
NE4NE4 sec. 16
NW4SE4 sec. 17 | June 19. 1940
Apr. 26. 1944
June 19. 1940
Mar. 25. 1940
Mar. 3, 1943 | 11.3 | | 64
- 65 | | 1052
1053
1054
1055
1056 | J. Higgins well
Bob Burns irrigation well.
Ivins Bentley irrigation well
Mrs. Bertha Gietz stock well.
Harold Johns irrigation well. | SELVIWIV son 17 | May 1, 1942
July 12, 1940
Mar. 30, 1944
Feb. 27, 1942
Mar. 25, 1940 | 27
75
72
104 | 200 | 67

65 | | 1057
1058
1059
1060
1061 | dod | do | Tune 20 1040 | 104
104
105
90
90 | | 65 | between the mouth of Bonita Creek near Solomonsville and the Southern Pacific Railat Calva-Continued 1,060 | Analysis No. | Source | Location | Date sampled | Depth of well (feet) | Yield (gallons
per minute) | Temperature (°F.) | |--|---|--|---|----------------------|-------------------------------|-------------------| | 1062 | Willard Welker irrigation well,
USGS 624, | NW¼SW¼ sec. 22 | Mar. 25, 1940 | | | | | 1063 | USGS 625.
USGS 625.
USGS 625. | do | July 19, 1940
Mar. 25, 1940 | | | | | 1064 | USGS 625 | NE¼SE¼ sec. 22 | Mar. 25, 1940 | | | 67 | | 1065 | USGS 625 | do | June 20, 1940
July 18, 1940 | | | | | 1066 | 0808020 | do | July 10, 1940 | | | | | 1067 | Ed. Claridge irrigation well,
USGS 626. | SW¼NW¼ sec. 24 | | 98
98 | | 66 | | 1068
1069 | Tilford Larson irrigation well | SE¼NW¼ sec. 24
NW¼NE¼ sec. 24 | Mar. 30, 1944
June 20, 1940 | 98 | | 66 | | 1009 | S. L. Claridge irrigation well | NWLNEL sec 24 | June 18, 1940 | 85 | | 67 | | 1071 | do | do | July 19, 1941 | 85 | | 67 | | | | 1 | | | | | | 1072 | Willard Pace unused well | do
NW¼SE¼ sec. 24 | Apr. 27, 1944
July 13, 1940
July 16, 1940
Feb. 27, 1942 | 85 | - | | | 1073
1074 | Willard Pace unused Well | NW4SE4 sec. 24 | July 13, 1940 | | | | | 1074 | E. S. Ellsworth unused well | NEWNWW sec 28 | Feb 27 1942 | 49 | | | | 1076 | M. Allred domestic well | SE1/SW1/4 sec. 28 | Mar. 26, 1940 | 33. 25 | | 63 | | 1077 | Amos Cook stock well | 0 | do | 70 | | 72 | | | | T. 8 S., R. 26 E.: | 4. | 22. 6 | | | | 1078
1079 | E. Harris unused well
Dug well at edge of river flood- | T. 8 S., R. 26 E.:
NE¼NW¼ sec. 9
NW¼SE¼ sec. 15 | Sent 15 1940 | 22. 6
10 | | 64 | | 1019 | plain. | | | | | | | 1080 | Stock well | SW1/SE1/4 sec. 29
SW1/SE1/4 sec. 32 | Mar. 5, 1941 | 500 | | 72 | | 1081 | Northwest well near head of main | SW14SE14 sec. 32 | do | | | 92 | | 1082 | Artesia ditch.
South well near head of Artesia. | do | do | | 200 | 92 | | 1002 | ditch. | | | | | 02 | | 1083 | Small well near head of Artesia | do | do | | 5 | 86 | | 1000 | ditch. | | | | | • | | | Trans Debiese 1 m II | T. 9 S., R. 26 S.: | 3.0 | | | | | 1084 | H. M. Robinson deep well | | | | ĺ | 70 | | | Unused well | NW1/NW1/ sec. 5 | Mor 11 1041 | 400 | | 79
85 | | 1085 | Unused well | NW\1NW\4 sec. 5
NW\1NW\4 sec. 5
NE\4SE\4 sec. 18 | do
Mar. 11, 1941
Mar. 4, 1941 | 400 | | 79
85 | | 1086 | 76 Ranch domestic well | NW¼NW¼ sec. 5
NE¼SE¼ sec. 18
T. 5 S., R. 25 E.: | Mar. 4, 1941 | | | | | 1086
1087 | 76 Ranch domestic well | NE 1/4 NW 1/4 Sec. 5
NW 1/4 NW 1/4 Sec. 5
NE 1/4 SE 1/4 Sec. 18
T. 5 S., R. 25 E.:
NW 1/4 SW 1/4 Sec. 2 | Mar. 4, 1941
Mar. 12, 1943 | 400
93. 5 | | 85 | | 1086
1087
1088 | 76 Ranch domestic well | T. 9 S., R. 26 S.:
NEX NW1 sec. 5.
NW1 NW14 sec. 5.
NE 1 SE 4 sec. 18.
T. 5 S., R. 25 E.:
NW1 SW1 sec. 2.
SE1 sec. 9. | Mar. 4, 1941
Mar. 12, 1943 | 93. 5 | 100 | | | 1086
1087
1088
1089 | 76 Ranch domestic well | NEANWA Sec. 5
NEASEA Sec. 18
T. 5 S., R. 25 E.:
NWASWA Sec. 2
SEA Sec. 9
SEASEA Sec. 9
SEASEA Sec. 9 | Mar. 4, 1941
Mar. 12, 1943
Feb. 8, 1941
Mar. 15, 1943 | | | 85
90 | | 1086
1087
1088 | 76 Ranch domestic well | SE4SE4 sec. 9
NW4NE4 sec 17 | Mar. 4, 1941
Mar. 12, 1943
Feb. 8, 1941
Mar. 15, 1943
Feb. 8, 1941 | 93. 5 | 100 | 85 | | 1086
1087
1088
1089 | 76 Ranch domestic well | NEANWA Sec. 5. NEASEA Sec. 18. T. 5 S. R. 25 E.: NWASWA Sec. 2. SEA Sec. 9. NWANEA Sec. 9. NWANEA Sec. 17. NEASEA Sec. 9. | Mar. 4, 1941
Mar. 12, 1943
Feb. 8, 1941
Mar. 15, 1943 | 93. 5 | | 85
90 | | 1086
1087
1088
1089
1090 | 76 Ranch domestic well | SE4SE4 sec. 9
NW4NE4 sec 17 | Mar. 4, 1941
Mar. 12, 1943
Feb. 8, 1941
Mar. 15, 1943
Feb. 8, 1941 | 93. 5 | | 85
90 | | 1086
1087
1088
1089
1090 | 76 Ranch domestic well | SE4SE4 sec. 9
NW4NE4 sec 17
NE4SE4 sec. 26 | Mar. 4, 1941 Mar. 12, 1943 Feb. 8, 1941 Mar. 15, 1943 Feb. 8, 1941 Feb. 26, 1941 | 93. 5 | 15 | 85
90 | | 1086
1087
1088
1089
1090
1091 | 76 Ranch domestic well | SE4 SE14 Sec. 9
NW4NE4 Sec 17
NE4SE14 Sec. 26 | Mar. 4, 1941 Mar. 12, 1943 Feb. 8, 1941 Mar. 15, 1943 Feb. 8, 1941 Feb. 26, 1941 | 93. 5 | 15
 | 85
90 | | 1086
1087
1088
1089
1090
1091
1092
1093 | 76 Ranch domestic well | SE4 SE14 Sec. 9
NW4NE4 Sec 17
NE4SE14 Sec. 26 | Mar. 4, 1941 Mar. 12, 1943 Feb. 8, 1941 Mar. 15, 1943 Feb. 8, 1941 Feb. 26, 1941 | 93. 5 | 60
10 | 85
90 | | 1086
1087
1088
1089
1090
1091 | 76 Ranch domestic well | SE4 SE14 Sec. 9
NW4NE4 Sec 17
NE4SE14 Sec. 26 | Mar. 4, 1941 Mar. 12, 1943 Feb. 8, 1941 Mar. 15, 1943 Feb. 8, 1941 Feb. 26, 1941 | 93. 5 | 15
 | 85
90 | | 1086
1087
1088
1089
1090
1091
1092
1093 | 76 Ranch domestic well Harvey Langham well, unused Grapevine Spring. YL Ranch stock well Spring from hornblende andesite in ravine, Bryce Ranch. East opening of spring in wash, Bryce Ranch. Surface flow in wash at spring (see analysis 1091). Walnut Spring. Cottonwood Spring |
SE4 SE14 Sec. 9
NW4NE4 Sec 17
NE4SE14 Sec. 26 | Mar. 4, 1941 Mar. 12, 1943 Feb. 8, 1941 Mar. 15, 1943 Feb. 8, 1941 Feb. 26, 1941 | 93. 5 | 60
10 | 85
90 | | 1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096 | 76 Ranch domestic well Harvey Langham well, unused Grapevine Spring. YL Ranch stock well Spring from hornblende andesite in ravine, Bryce Ranch. East opening of spring in wash, Bryce Ranch. Surface flow in wash at spring (see analysis 1091). Walnut Spring Cottonwood Spring Spring in Big Spring Wash Spring in Big Spring Wash | SE// SE// Sec. 9
NW// NE// Sec. 17
NE// SE// Sec. 26
do
SE// SE// Sec. 26
SE// SE// Sec. 26
T. 6 S., R. 25 E.:
SE// NW// Sec. 5 | Mar. 4, 1941 Mar. 12, 1943 Feb. 8, 1941 Mar. 15, 1943 Feb. 8, 1941 Feb. 26, 1941do Feb. 27, 1941 Feb. 3, 1941 Feb. 3, 1941 Feb. 13, 1941 | 93. 5 | 60
10
2 | 90 | | 1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097 | 76 Ranch domestic well Harvey Langham well, unused Grapevine Spring. YL Ranch stock well Spring from hornblende andesite in ravine, Bryce Ranch. East opening of spring in wash, Bryce Ranch. Surface flow in wash at spring (see analysis 1091). Walnut Spring Cottonwood Spring Spring in Big Spring Wash Spring in Big Spring Wash | SE// SE// Sec. 9
NW// NE// Sec. 17
NE// SE// Sec. 26
do
SE// SE// Sec. 26
SE// SE// Sec. 26
T. 6 S., R. 25 E.:
SE// NW// Sec. 5 | Mar. 4, 1941 Mar. 12, 1943 Feb. 8, 1941 Feb. 26, 1941 | 93. 5 | 60
10
2
4 | 90 90 | | 1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098 | 76 Ranch domestic well Harvey Langham well, unused Grapevine Spring. YL Ranch stock well Spring from hornblende andesite in ravine, Bryce Ranch. East opening of spring in wash, Bryce Ranch. Surface flow in wash at spring (see analysis 1091). Walnut Spring Cottonwood Spring Spring in Big Spring Wash Spring in Big Spring Wash | SE// SE// Sec. 9
NW// NE// Sec. 17
NE// SE// Sec. 26
do
SE// SE// Sec. 26
SE// SE// Sec. 26
T. 6 S., R. 25 E.:
SE// NW// Sec. 5 | Mar. 4, 1941 Mar. 12, 1943 Feb. 8, 1941 Feb. 26, 1941 | 93. 5 | 60
10
2 | 90 | | 1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097 | 76 Ranch domestic well Harvey Langham well, unused Grapevine Spring YL Ranch stock well Spring from hornblende andesite in ravine, Bryce Ranch. East opening of spring in wash, Bryce Ranch. Surface flow in wash at spring (see analysis 1991). Walnut Spring Cottonwood Spring Spring in Big Spring Wash Seep along Big Spring Road do Spring from gravel in gully Spring zone in wash | SE4/SE4/ sec. 9
NW4/NE4/ sec 17
NE4/SE4/ sec. 26
do SE4/SE4/ sec. 26
SW4/SW4/ sec. 26
T. 6 S. R. 25 E.: SE4/NW4/ sec. 5
NE4/SW4/ sec. 5
NE4/SW4/ sec. 5
do NW4/SE4/ sec. 5 | Mar. 4, 1941 Mar. 12, 1943 Feb. 8, 1941 Feb. 26, 1941 do do Feb. 27, 1941 Feb. 13, 1941 Feb. 10, 1944 Feb. 14, 1941 | 93. 5 | 60
10
2
4 | 85
 | | 1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099 | 76 Ranch domestic well Harvey Langham well, unused Grapevine Spring YL Ranch stock well Spring from hornblende andesite in ravine, Bryce Ranch. East opening of spring in wash, Bryce Ranch. Surface flow in wash at spring (see analysis 1991). Walnut Spring Cottonwood Spring Spring in Big Spring Wash Seep along Big Spring Road do Spring from gravel in gully Spring zone in wash | SE4/SE4/ sec. 9
NW4/NE4/ sec 17
NE4/SE4/ sec. 26
do SE4/SE4/ sec. 26
SW4/SW4/ sec. 26
T. 6 S. R. 25 E.: SE4/NW4/ sec. 5
NE4/SW4/ sec. 5
NE4/SW4/ sec. 5
do NW4/SE4/ sec. 5 | Mar. 4, 1941 Mar. 12, 1943 Feb. 8, 1941 Mar. 15, 1943 Feb. 8, 1941 Feb. 26, 1941 | 93. 5 | 60
10
2
4 | 85
 | | 1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099 | 76 Ranch domestic well Harvey Langham well, unused Grapevine Spring. YL Ranch stock well Spring from hornblende andesite in ravine, Bryce Ranch. East opening of spring in wash, Bryce Ranch. Surface flow in wash at spring (see analysis 1091). Walnut Spring Cottonwood Spring Spring in Big Spring Wash Seep along Big Spring Road O Spring from gravel in gully Spring zone in wash. do Spring near lower end of seepage | SE4/SE4/ sec. 9
NW4/NE4/ sec 17
NE4/SE4/ sec. 26
do SE4/SE4/ sec. 26
SW4/SW4/ sec. 26
T. 6 S. R. 25 E.: SE4/NW4/ sec. 5
NE4/SW4/ sec. 5
NE4/SW4/ sec. 5
do NW4/SE4/ sec. 5 | Mar. 4, 1941 Mar. 12, 1943 Feb. 8, 1941 Mar. 15, 1943 Feb. 8, 1941 Feb. 26, 1941 | 93. 5 | 60
10
2
4 | 85
 | | 1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099 | 76 Ranch domestic well Harvey Langham well, unused Grapevine Spring. YL Ranch stock well Spring from hornblende andesite in ravine, Bryce Ranch. East opening of spring in wash, Bryce Ranch. Surface flow in wash at spring (see analysis 1091). Walnut Spring. Cottonwood Spring. Spring in Big Spring Wash Seep along Big Spring Road. do Spring from gravel in gully. Spring zone in wash. do Spring near lower end of seepage zone in wash. | SE4/SE1/4 sec. 9
NW4/NE4/ sec 17
NE1/SE1/4 sec. 26.
do | Mar. 4, 1941 Mar. 12, 1943 Feb. 8, 1941 Mar. 15, 1943 Feb. 8, 1941 Feb. 26, 1941 | 93. 5 | 60
10
2
4 | 85
 | | 1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101 | 76 Ranch domestic well Harvey Langham well, unused Grapevine Spring. YL Ranch stock well Spring from hornblende andesite in ravine, Bryce Ranch. East opening of spring in wash, Bryce Ranch. Surface flow in wash at spring (see analysis 1091). Walnut Spring Cottonwood Spring Spring in Big Spring Wash Seep along Big Spring Road O Spring from gravel in gully Spring zone in wash. do Spring near lower end of seepage zone in wash. Most northerly of 6 seeps. | SE4/SE1/4 sec. 9
NW4/NE4/ sec 17
NE1/SE1/4 sec. 26.
do | Mar. 4, 1941 Mar. 12, 1943 Feb. 8, 1941 Mar. 15, 1943 Feb. 8, 1941 Feb. 26, 1941 | 93. 5 | 60
10
2
4
 | 85
 | | 1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101 | 76 Ranch domestic well Harvey Langham well, unused Grapevine Spring. YL Ranch stock well Spring from hornblende andesite in ravine, Bryce Ranch. East opening of spring in wash, Bryce Ranch. Surface flow in wash at spring (see analysis 1091). Walnut Spring. Cottonwood Spring. Spring in Big Spring Wash Seep along Big Spring Road. do Spring from gravel in gully. Spring zone in wash. do Spring near lower end of seepage zone in wash. | SE4/SE4/ sec. 9
NW4/NE4/ sec 17
NE4/SE4/ sec. 26
do SE4/SE4/ sec. 26
SW4/SW4/ sec. 26
T. 6 S. R. 25 E.: SE4/NW4/ sec. 5
NE4/SW4/ sec. 5
NE4/SW4/ sec. 5
do NW4/SE4/ sec. 5 | Mar. 4, 1941 Mar. 12, 1943 Feb. 8, 1941 Mar. 15, 1943 Feb. 8, 1941 Feb. 26, 1941 | 93. 5 | 15
60
10
2
4
 | 85
 | | 1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104 | The Ranch domestic well Harvey Langham well, unused Grapevine Spring. YL Ranch stock well. Spring from hornblende andesite in ravine, Bryce Ranch. East opening of spring in wash, Bryce Ranch. Surface flow in wash at spring (see analysis 1091). Walnut Spring Cottonwood Spring Spring in Big Spring Wash Seep along Big Spring Road do Spring from gravel in gully Spring rom gravel in gully Spring near lower end of seepage zone in wash. Most northerly of 6 seeps J. Udall irrigation well Jack Bryce irrigation well | SE4/SE4/Sec. 9 NW4/NE4/Sec 17 NE4/SE4/Sec. 26 do SE4/SE4/Sec. 26 SW4/SW4/Sec. 26 T. 6 S. R. 25 E.: SE4/NW4/Sec. 5 NE4/SW4/Sec. 5 do do do SE4/SE4/Sec. 5 SW4/SW4/Sec. 5 NW4/SE4/Sec. 5 NW4/SE4/Sec. 5 NW4/SE4/Sec. 5 | Mar. 4, 1941 Mar. 12, 1943 Feb. 8, 1941 Feb. 26, 1941 do do Feb. 27, 1941 Feb. 13, 1941 Feb. 13, 1941 Feb. 13, 1941 Feb. 14, 1941 Feb. 10, 1944 do Feb. 14, 1941 Apr. 20, 1943 Aug. 23, 1940 | 93. 5 | 15
60
10
2
4
 | 85
 | | 1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104 | 76 Ranch domestic well Harvey Langham well, unused Grapevine Spring. YL Ranch stock well. Spring from hornblende andesite in ravine, Bryce Ranch. East opening of spring in wash, Bryce Ranch. Surface flow in wash at spring (see analysis 1091). Walnut Spring Cottonwood Spring Spring in Big Spring Wash Seep along Big Spring Road do Spring from gravel in gully Spring roar lower end of seepage zone in wash. Most northerly of 6 seeps J. Udall irrigation well Dick Bryce stock well | SE4/SE4/Sec. 9 NW4/NE4/Sec 17 NE4/SE4/Sec. 26 do SE4/SE4/Sec. 26 SW4/SW4/Sec. 26 T. 6 S. R. 25 E.: SE4/NW4/Sec. 5 NE4/SW4/Sec. 5 do do do SE4/SE4/Sec. 5 SW4/SW4/Sec. 5 NW4/SE4/Sec. 5 NW4/SE4/Sec. 5 NW4/SE4/Sec. 5 | Mar. 4, 1941 Mar. 12, 1943 Feb. 8, 1941 Mar. 15, 1943 Feb. 8, 1941 Feb. 26, 1941 | 93. 5 | 15
60
10
2
4
 | 85
 | | 1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104 | The Ranch domestic well Harvey Langham well, unused Grapevine Spring. YL Ranch stock well. Spring from hornblende andesite in ravine, Bryce Ranch. East opening of spring in wash, Bryce Ranch. Surface flow in wash at spring (see analysis 1991). Walnut Spring Cottonwood Spring Spring in Big Spring Wash Seep along Big Spring Road do Spring from gravel in gully Spring rom gravel in gully Spring near lower end of seepage zone in wash. Most northerly of 6 seeps J. Udall irrigation well Jack Bryce irrigation well Dick Bryce stock well Driven observation well, USGS 321. | SE4/SE1/Sec. 9 NW4/NE4/Sec 17 NE4/SE1/Sec.
26 do SE4/SE1/Sec. 26 SW1/SW1/Sec. 26 T. 6 S. R. 25 E.: SE1/NW1/Sec. 5 NE1/SW1/Sec. 5 do NW1/SE1/Sec. 5 do SE4/SE1/Sec. 5 SW1/SW1/Sec. 6 NW1/SE1/Sec. 7 SW1/SE1/Sec. 7 SW1/SE1/Sec. 7 | Mar. 4, 1941 Mar. 12, 1943 Feb. 8, 1941 Feb. 26, 1941 | 93. 5 | 15
60
10
2
4
 | 85
 | | 1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1100
1101
1102
1103
1104
1105
1106
1106 | The Ranch domestic well Harvey Langham well, unused Grapevine Spring. YL Ranch stock well. Spring from hornblende andesite in ravine, Bryce Ranch. East opening of spring in wash, Bryce Ranch. Surface flow in wash at spring (see analysis 1991). Walnut Spring Cottonwood Spring Spring in Big Spring Wash Seep along Big Spring Road do Spring from gravel in gully Spring rom gravel in gully Spring near lower end of seepage zone in wash. Most northerly of 6 seeps J. Udall irrigation well Jack Bryce irrigation well Dick Bryce stock well Driven observation well, USGS 321. | SE4 SE1 Sec. 9 NW4NE4 sec 17 NE4 SE4 sec. 26 do SE4 SE4 sec. 26 SW4 SW4 sec. 26 T. 6 S. R. 25 E.: SE4 NW4 sec. 5 do NW4SE4 sec. 5 do SE4 SE4 sec. 5 NE4 SW4 sec. 5 NW4 SE4 sec. 7 NW4 SE4 sec. 7 SW4 SE4 sec. 7 | Mar. 4, 1941 Mar. 12, 1943 Feb. 8, 1941 Feb. 26, 1941 do | 93. 5
70
 | 15
60
10
2
4
 | 85
 | | 1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104 | Tô Ranch domestic well Harvey Langham well, unused Grapevine Spring. YL Ranch stock well Spring from hornblende andesite in ravine, Bryce Ranch. East opening of spring in wash, Bryce Ranch. Surface flow in wash at spring (see analysis 1091). Walnut Spring Cottonwood Spring. Spring in Big Spring Wash Seep along Big Spring Road. do. Spring from gravel in gully Spring zone in wash. do. Spring near lower end of seepage zone in wash. Most northerly of 6 seeps J. Udall irrigation well. Jack Bryce stock well. Dick Bryce stock well. Driven observation well, USGS | SE4/SE1/Sec. 9 NW4/NE4/Sec 17 NE4/SE1/Sec. 26 do SE4/SE1/Sec. 26 SW1/SW1/Sec. 26 T. 6 S. R. 25 E.: SE1/NW1/Sec. 5 NE1/SW1/Sec. 5 do NW1/SE1/Sec. 5 do SE4/SE1/Sec. 5 SW1/SW1/Sec. 6 NW1/SE1/Sec. 7 SW1/SE1/Sec. 7 SW1/SE1/Sec. 7 | Mar. 4, 1941 Mar. 12, 1943 Feb. 8, 1941 Feb. 26, 1941 do | 93. 5 | 15
60
10
2
4
 | 85
 | between the mouth of Bonita Creek near Solomonsville and the Southern Pacific Railat Calva—Continued [Analyses in parts per million] | \$\frac{1}{2} \frac{1}{2} \f | | | | | | naij sc | вщра | rts pc | | 1011 | | | | | | |--|------------------------------------|------------------|----------------------|-------------------------|------------------|------------|----------------------------|--------------|-----------------|------------|----------------------|-------------------------|----------------------|----------------|----------------------| | 186 | nduct-
X10° at | ₹ | a (Mg) | nd po- | nate
Os) | 04) | (c1) | F) | (\$0) | 03) | Disso
soli | olved
ids | Inéss
Os | dium | Zo. | | 186 | Specific co
ance (K)
25° C.) | Calcium (| Magnesiun | Sodium a
tassium (A | Bicarbo
(HC | Sulfate (S | Chloride (| Fluoride (| Nitrate (N | Borate (B | Parts per
million | Tons per
acre-foot | Total hard
as CaC | Percent se | Analysis l | | 650 | | | | | 503 | 160 | 308 | | | | | | 270 | | 1062 | | 310 | 650 | | | | 543
537 | 1, 200 | 1,500 | | | | | | 132 | | 1064 | | 201 | 310 | | | | 467 | 400 | 540 | <u></u> | | | | | 510 | | ł | | 194 | 205 | 166 | 57 | 609 | 494
432 | 160 | 340 | 2. 6 | 31 | .1 | 2, 330 | 3. 17 | 330 | 67 | 1068
1069 | | 1,125 | 191 | 65 | 18 | 336 | 433
437 | 154 | 320
298 | 4.6 | 21 | | 1, 112 | 1. 51 | 225
236 | 76 | 1070 | | 181 | 194 | 61 | 18 | 348 | 422 | 163 | 1, 125 | 4.3 | 13 | . 2 | 1,130 | 1. 54 | 226 | 77 | 1072
1073 | | 181 | 380 | | | | 706 | 330 | 770 | 1 0 | 10 | | | | 450 | | 1075 | | 228 208 49 234 22 937 165 1.4 1,605 2.18 721 41 1079 96. 4 24 2.6 1855 118 128 166 3.4 567 77 71 85 1080 79. 4 9. 5 3. 9 163 164 88 101 10 456 .62 40 90 1081 109 12 4. 4 224 153 162 148 12 638 .87 48 91 1082 109 52 7. 4 174 143 187 155 3. 2 649 .88 160 70 1083 114 40 136 20 1.7 404 87 257 400 12 1.12 1.38 1.55 57 94 1085 23. 6 26 2. 2 21 117 12 7 0.9 1.127 1.7 74 39 1086 16. 6 1.8 1.8 1.8 1.8 1.8 | 181 | | | | 164 | 700 | 300 | | | | | | 645 | | 1077 | | T9.4 | 228 | | ŀ | l | 22 | 150
937 | 165 | 1.4 | 2 . 0 | | 1,605 | 2. 18 | 721 | 41 | 1079 | | 109 52 7. 4 174 143 187 155 3. 2 | 96. 4
79. 4 | | 2. 6
3. 9 | 185
163 | 118
164 | 128
88 | | 3. 4
10 | | | 567
456 | . 77 | | | 1080
1081 | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 109 | 12 | 4.4 | 224 | 153 | 162 | 148 | 12 | | | 638 | . 87 | 48 | 91 | 1082 | | 16. 6 | 109 | 52 | 7. 4 | 174 | 143 | 187 | 155 | 3. 2 | | | 649 | . 88 | 160 | 70 | 1083 | | 22.4 | 195 | 20 | . 87
1. 7
2. 2 | 404 | 149
87
117 | 257 | 400 | 1 12 | | | 1, 138 | 1.55 | 103
57
74 | 94 | 1084
1085
1086 | | 22.4 | 16. 6
48. 5 | 48 | <u></u>
28 | 23 | 45
284 | 28 | 11 | 1.2 | <u></u>
5, 2 | | 284 | .39 | 235 | 18 | 1087
1088 | | 61. 9 67 26 27 234 95 27 1. 0 2. 5 360 .49 274 18 1092 66. 2 70 29 28 253 92 32 1. 3 5. 0 382 .52 294 17 1093 49. 7 41 26 35 264 28 24 1. 1 3. 5 289 .39 209 27 1094 297 62 29 543 191 326 670 5. 1 1,729 .42 274 81 1095 388 82 42 712 187 523 860 5. 4 2,316 3. 15 377 80 1096 310 194 703 3. 5 2,960 4. 03 529 79 1098 480 118 57 899 243 557 1, 200 4. 7 3. 5 2,960 4. 03 529 79 1098 308 68 30 573 213 337 710 4. 3 1,827 2. 48 293 81 1099 301 198 673 4. 6 1,827 2. 48 293 81 1099 301 198 673 4. 6 1,827 2. 48 293 81 1099 40 176 89 1,990 802 1,834 1,790 8. 2 4 5. 0 6,310 8. 58 805 84 1103 680 92 49 1,508 798 1,201 1,280 4,520 6.15 431 88 1104 562 1,060 8. 0 2,970 4. 04 247 90 1106 424 1042 565 512 1,060 8. 0 2,970 4. 04 247 90 1106 424 1042 565 512 1,060 8. 0 2,970 4. 04 247 90 1106 424 104 38 1,222 862 760 1,100 9. 1 3,660 4. 98 416 86 1108 61 108 | 1 22.4 | 100 | 33 | 41 | 84
383 | 126 | 6.0
17 | 1.8 | 2.0 | | 510 | . 69 | 385 | | 1089 | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 64. 8 | 69 | 28 | 28 | 248 | 97 | 28 | 1.0 | 2, 5 | | 376 | . 51 | 287 | 18 | 1091 | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 61.9 | 67 | 26 | 27 | 2 34 | 95 | 27 | 1.0 | 1 | | 360 | | 274 | 18 | 1092 | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 66. 2
49. 7 | | | 28
35 | 253
264 | | | 1.3
1.1 | | | 382
289 | .52
.39 | 294
209 | 17
27 | 1093
1094 | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 297
388
310 | 62
82 | 29
42 | | 191
187 | 326
523 | 860 | 5. 1
5. 4 | | | 1,729
2,316 | | 274
377 | | 1095
1096 | | 305 | 480
308 | 118
68 | 57
30 | 899
573 | 243 | 557
337 | 1, 200 | 4.7
4.3 | | | 2, 960
1, 827 | | 529
293 | 79
81 | 1098
1099 | | 680 92 49 1,508 798 1,201 1,280 4,520 6.15 431 88 1104 562 485 30 42 1,042 565 512 1,060 8.0 2,970 4.04 247 90 1106 424 38 1,222 862 760 1,100 9.1 3,660 4.98 416 86 1108 | 301
305 | | | | 198
192 | | 673
683 | | | 4.6
4.6 | | | | | | | 485 30 42 1,042 565 512 1,060 8.0 | 852
940
680 | 222
176
92 | 89 | 1,650
1,990
1,508 | 802 | 1.834 | 2, 180
1, 790
1, 280 | 6. 7
8. 2 | 24
 | 5. 0 | 6.310 | 7. 34
8. 58
6. 15 | 883
805
431 | 80
84
88 | 1103 | | 566 104 38 1,222 862 760 1,100 9.1 3,660 4.98 416 86 1108 | 562
485 | 30 | 42 | 1,042 | 565 | 512 | | 8.0 | | | 2, 970 | 4. 04 | 247 | 90 | 1105
1106 | | | 566 | 104 | 38 | 1, 222 | 862 | 760 | 1, 100 | 9. 1 | | | 3, 660 | 4. 98 | 416 | 86 | 1108 | 879751-50-9 | Analysis No. | Source | Location | Date sampled | Depth of well (feet) | Yield (gallons
per minute) | Temperature
(°F.)
| |--------------------------------------|--|---|---|----------------------------------|-------------------------------|----------------------------| | 1110
1111
1112
1113
1114 | O. E. Bryce well, unused. Driven observation well, 5-32 do | do | Mar. 8, 1943
Apr. 2, 1943
Aug. 3, 1943
Feb. 9, 1944
Aug. 20, 1943 | 27
18. 5
18. 5
18. 5 | 15.
7 | 63 | | 1115
1116
1117
1118
1119 | 5-37 | do | Apr. 2, 1943
Aug. 2, 1943
Apr. 2, 1943
Aug. 20, 1943 | 18. 4
18. 4
18. 9
18. 9 | 15
8
10
8
8 | 61
63
66 | | 1120
1121
1122
1123
1124 | 5-44 | SW14SW14 sec. 7
do | Aug. 2, 1943
Aug. 3, 1943
Jan. 4, 1944
Aug. 29, 1944
Aug. 20, 1943 | | 2
12
10
10
8 | 63
66
65
77
65 | | 1125
1126
1127
1128
1129 | 5-50 | do
NW¼SW¼ sec. 7
do
SW¼SW¼ sec. 7 | Apr. 2, 1943
Aug. 3, 1943
Apr. 2, 1943
Aug. 3, 1943
Aug. 4, 1943 | 18. 6
18. 6
18. 7
18. 7 | 20
8
12
8 | 63
64
68 | | 1130
1131
1132
1133
1134 | 5-56 | do
NW¼SW¼ sec. 7
do
do
NE¼SW¼ sec. 7 | Aug. 20, 1943
Aug. 24, 1943
Apr. 2, 1943
Aug. 3, 1943
Apr. 2, 1943 | 18. 8
18. 8
23. 8 | 8
8
3
1
1 | 67 | | 1135
1136
1137
1138
1139 | 5-59 | do
doSE4NW¼ sec. 7
SW4NW¼ sec. 7
NW¼NW¼ sec. 7 | Aug. 24, 1943
Apr. 2, 1943
Oct. 16, 1943
Aug. 19, 1943
Aug. 20, 1943 | 23. 8
28. 9 | 3
8
8
3
4 | 63
66
67 | | 1140
1141
1142
1143
1144 | 5-65 | do | Feb. 9, 1944
Aug. 6, 1943
Aug. 24, 1943
Aug. 20, 1943
Feb. 14, 1941 | | 12
1
6
3 | 65
63
 | | 1145
1146
1147
1148
1149 | Spring piped to farmhouse | SE48W4 sec. 9
SW4NE4 sec. 16
NW4SW4 sec. 16
NW4NW4 sec. 16
SW4NW4 sec. 16 | Feb. 13, 1941
Mar. 31, 1944
Mar 22, 1940
Aug. 24, 1943
July 26, 1943 | 57
28 | 1 | 72 | | 1150
1151
1152
1153
1154 | 3-40 | dodo | Aug. 6, 1943
do | | 10
7
12
8 | 65
64
66
64
65 | | 1155
1156
1157
1158
1159 | 3-42
3-42
3-42
3-42
3-42 | do | Jan. 4, 1944
Feb. 29, 1944
May 2, 1944
July 10, 1944
Aug. 29, 1944 | | 8
8
3
4
2 | 64
63
64
65 | | 1160
1161
1162
1163
1164 | 3-42
3-44
3-46
3-54
3-54 | NE¼SW¼ sec. 16 | Oct. 27, 1944
Aug. 24, 1943
Aug. 10, 1943
July 26, 1943
Aug. 10, 1943 | | 2
8
9
 | 64
 | between the mouth of Bonita Creek near Solomonsville and the Southern Pacific Rail-at Calva—Continued | iduct- | <u>(8</u> | (Mg) | and po- | nate | 3 | £. | 6 | ြိ | (F) | Disso | olved
ids | ness
Os | lium | ٥ | |--|--------------|----------------|-------------------------|------------------------------------|-------------------|------------------------------------|--------------------|---------------|---------------------------|----------------------|-----------------------|--|----------------|--------------------------------------| | Specific conduct-
ance (K×10° at
25° C.) | Calcium (Ca) | Magnesium (Mg) | Sodium an
tas ium (N | Bicarbonate
(HCO ₃) | Sulfate (804) | Chloride (Cl) | Fluoride (F) | Nitrate (NO3) | Borate (BO ₃) | Parts per
million | Tons per
acre-foot | Total hardness
as CaCO ₃ | Percent sodium | Analysis No. | | 387
445
443
429
442 | 101 | 29 | 910 | 852
868 | 458 | 520
800
845
772
790 | 8.7 | 27 | 7.5 | 2,750 | 3. 74 | 371 | 84 | 1110
1111
1113
1113
1114 | | 499
558
408
444
510 | 191 | 50 | 1,045 | 892
946
798 | 538

1,015 | 965
1, 135
705
820 | 3.8 | 9.8 | 5. 0 | 3, 440 | 4.68 | 682 | 77 | 1118
1116
1117
1118
1118 | | 381
314
273
278
470 | 83 | 26 | 526 | 598
564 | 254 | 660
615
510
525
910 | 4.7 | .5 | 15 | 1, 680 | 2. 28 | 314 | 78 | 1120
1121
1122
1123
1124 | | 316
298
462
458
452 | 141 | 40 | 896 | 766
750
864
 | 499 | 490
460
850
840
860 | 7.7 | 21 | 12 | 2, 880 | 3.92 | 516 | 79 | 1124
1126
1127
1128
1128 | | 476
339
484
473
374 | | | | 882
866
872
668 | | 940
575
830
885
730 | | | | | | | | 1130
1131
1132
1133
1134 | | 424
506
508
349
504 | | | | 898 | | 765
920
610
1, 230 | | | | | | | | 1138
1136
1137
1138
1138 | | 591
396
296
515
414 | 76 | 27 | 804 | 830
796
 | 402 | 1, 160
670
720
945
970 | 5. 6 | | 8.8 | 2, 450 | 3.33 | 301 | 85 | 1140
1141
1142
1144
1144 | | 360
455
420
460 | 63
88 | 20
38 | 714
956 | 279
816
636
806 | 372
598
500 | 820
795
710
805 | 7. 2
7. 7
18 | 26
22 | 4.0 | 2, 133
2, 910 | 2. 90
3. 96 | 239
376
150 | 87
85 | 1148
1146
1147
1148 | | 389
439
348
405
424 | 182 | 43 | 731 | 678 | 387 | 715
795
605 | 4.7 | 18 | 8.0 | 2, 570 | 3, 50 | 631 | 72 | 1149
1150
1151
1152
1153 | | 390
373
389
369
375 | 158 | 43 | 683 | 622 | 379 | 770
800
790
730 | 3. 4 | 35 | 5. 0 | 2, 400 | 3. 26 | 572 | 72 | 1154
1155
1156
1157
1158 | | 352
337
474
436
455 | 62 | | 952 | 696
660 | 437 | 680
670
935
900
940 | | | | 2,780 | 3, 78 |

278 | | 1160
1161
1162
1163 | | 469 | 102 | | 902 | 720 | | 970 | | | | ∠, (0U | 3. 10 | 210 | | 116 | | Analysis No. | Source | Location | Date sampled | Depth of well (feet) | Yield (gallons
per minute) | Temperature
(°F.) | |--------------------------------------|---|--|---|----------------------------------|-------------------------------|----------------------------| | 1165
1166 | Vance Marshall well, unused
Vance Marshall irrigation well,
USGS 318. | SW¼NW¼ sec. 17
NE¼NE¼ sec. 17 | Feb. 26, 1943
June 19, 1940 | 42 | | 68 | | 1167
1168
1169 | do
USGS 319 | do
do
SE¼NE¼ sec. 17 | Feb. 26, 1943
Apr. 14, 1944
June 19, 1940 | 42
42 | | 67 | | 1170
1171
1172
1173
1174 | USGS 319
USGS 320
USGS 320
USGS 320
USGS 320 | do
SE¼SE¼ sec. 17
dodo
dodo | Feb. 26, 1943
July 23, 1940
Feb. 26, 1943
Apr. 14, 1944
May 2, 1944 | 46.3
46.3
46.3
46.3 | | 64 | | 1175
1176
1177
1178
1179 | Driven observation well, 4-19
4-22 | do | Aug. 10, 1943
Aug. 16, 1943
Aug. 17, 1943
July 28, 1943
July 27, 1943 | | 8
8
8
2, 5 | 66
65
63
64
65 | | 1180
1181
1182
1183
1184 | 4-28 | do
do
dodo | Oct. 27, 1943
Jan. 4, 1944
Feb. 29, 1944
May 2, 1944
July 10, 1944 | | 7
8
2
2
2 | 67
63
60
61
64 | | 1185
1186
1187
1188
1189 | 4-28.
4-28.
4-31.
4-32.
4-33. | do
SE¼SW¼ sec. 17
do
NE¼NW¼ sec. 17 | Aug. 29, 1944
Oct. 27, 1944
Aug. 16, 1943
July 28, 1943
July 27, 1943 | | 3
8
2. 5
2 | 65
66
64
70
66 | | 1190
1191
1192
1193
1194 | 4-35 | SE¼SW¼ sec. 17
dodo
do
NE¼SW¼ sec. 17
SE¼SW¼ sec. 17 | July 29, 1943
Aug. 16, 1943
July 28, 1943
Aug. 18, 1943
July 29, 1943 | | ,3
8
2
8
3 | 66
66
64 | | 1195
1196
1197
1198
1199 | 4-40 | do
do
NE¼NW¼ sec. 17
NW¼SW¼ sec. 17
SW¼SW¼ sec. 17 | Aug. 19, 1943
July 28, 1943
do.
Aug. 18, 1943
Aug. 19, 1943 | | 6
1
2
8
6 | 64
65
66
72
68 | | 1200
1201
1202
1203
1204 | 4-46 | do | July 28, 1943
do
July 29, 1943
July 28, 1943
Aug. 18, 1943 | | 2. 5
3
3 | 64
66
64
 | | 1205
1206
1207
1208
1209 | 4-524-53 | do
SW¼NW¼ sec. 17
SE¼NW¼ sec. 17
NE¼NW¼ sec. 17
NE¼NE¼ sec. 17 | July 28, 1943
July 27, 1943
do
Aug. 20, 1943
Oct. 11, 1943 | | 2
3
6
2 | 65
65
68
65
66 | | 1210
1211
1212
1213
1214 | 4-58 | SW¼NE¼ sec. 17
SE¼NW¼ sec. 17
NW¼SE¼ sec. 17
do
SE¼NW¼ sec. 17 | Aug. 6, 1943
do
July 26, 1943 | | 1, 5
10
9
4 | 64
64
65
65
67 | | 1215
1216
1217
1218
1219 | 4-62
USGS 322
USGS 322
USGS 322
USGS 322 | do | Aug. 6, 1943
Apr. 15, 1940
May 27, 1940
Dec. 9, 1940
Oct. 28, 1943 | 21
21
21
21
21
21 | 1.5 | 68

63 | | 1220
1221
1222
1223
1224 | USGS 323
USGS 323
USGS 324
USGS 324
USGS 324 | NW¼NE¼ sec. 18doSW¼NE¼ sec. 18dododododododo | May 27, 1940
Dec: 9, 1940
May 25, 1940
Dec. 17, 1940
Oct. 28, 1943 | 14
14
14
14
14 | | 63
67 | between the mouth of Bonita Creek near Solomonsville and the Southern Pacific Railat Calva—Continued | 1 | | , | | | | | | | | | | | | | |--|-------------------------|----------------------|----------------------------------|---------------------------------|---------------------------------|---------------------------------|--------------|-------------------|--------------|--------------------------------------|----------------------------------|----------------------------|----------------------|--------------------------------------| | c×10° at | (Ca) | m (Mg) | and po- | onate | 304) | (cl) | (F) | NO ₃) | 803) | | olved
ids | rdness
30s | odium | No. | | Specific conductance (KX10° at 25° C.) | Calcium (Ca) |
Magnesium (Mg) | Sodium and po-
tassium (Na+K) | Bicarbonate (HCO ₃) | Sulfate (SO4) | Chloride (CI) | Fluoride (F) | Nitrate (NOs) | Borate (BO3) | Parts per
million | Tons per
acre-foot | Total hardness
as CaCOs | Percent sodium | Analysis No. | | 337
430 | | | | 676 | 500 | 738 | | | | | | 81 | | 1165
1166 | | 501
552
510 | 73
58 | 31
35 | 1, 061
1, 210 | 742
660
732 | 703
870
700 | 895
1,030
938 | 6.0 | 16
8.5 | 14
2 | 3, 140
3, 540 | 4. 27
4. 81 | 310
288
232 | 88
90 | 1167
1168
1169 | | 530
260 | | | | 814
496 | 250 | 920
480
425 | | | | | | 345 | | Į. | | 255
381
368 | 161 | 45 | 652 | 616
602 | 363 | 425
780
765 | 2.6 | 33 | 1.5 | 2, 330 | 3. 17 | 587 | 71 | 1170
1171
1172
1173
1174 | | 387
422
336 | | | | 708 | | 795
885
650
835
695 | | | | | | | | 1175
1176
1177
1178 | | 406
855 | 137 | 38 | 735 | 670 | 344 | l | | 14 | | 2, 433 | 3. 31 | 498 | 76 | 1179 | | 363
363
351
372 | 162 | 45
 | 630 | 684 | 329 | 730
740
700
655 | 3.9 | 21
 | 10 | 2, 260 | 3.07 | 590 | 70 | 1180
1181
1182
1183 | | 360 | | | | | | 705
730 | | | | | | | | 1184 | | 369
372
331
269 | | | | | | 765
520 | | | | | | | | 1185
1186
1187
1188 | | 305
297
353 | | | | | | 560 | | | | | | | | 1189
1190
1191 | | 310
306
312 | | | | 710 | | 710
620
520
575 | | | | | | | | 1192
1193
1194 | | 308
344
350 | | | | 558 | | 570
715 | | | | | | | | 1195
1196
1197 | | 350
243
284 | | | | | | 435
510 | | | | | | | | 1197
1198
1199 | | 320
281
271
274
274 | | | | 702 | | 595
555 | | | | | | | | 1200
1201
1202 | | 1 | | | | | | 490
480 | | | | | | | | 1201
1202
1203
1204 | | 303
302
348 | 106 | 31 | 551 | 633 | 2 81 | 600
535
665
925 | | 2 9 | | 1,845 | 2.51 | 392 | 75 | 1205
1206
1207 | | 518
467
403 | | | | 920 | | 870 | | | | | | | | 1208
1209 | | 406
316
319
370 | | | | 904
746 | | 720
705
540 | | | | | | | | 1210
1211
1212
1213
1214 | | 370
399
550 | 66 | 19 | 791 | 762
822 | 348
376 | 660
710 | 8.8 | 26
 | 10 | 2, 294 | 3. 12 | 370 | 88 | 1214
1215
1216 | | 490
419
388 | 172
151
137
74 | 45
39
33
30 | 1, 030
927
814
801 | 962
912
802
722 | 376
524
452
394
374 | 1, 078
946
820
730 | 8.8
7.8 | 22 |

25 | 3, 320
2, 960
2, 600
2, 390 | 4. 52
4. 03
3. 54
3. 25 | 614
537
478
308 | 78
79
79
85 | 1217
1217
1218
1219 | | 480
501 | 26
97 | 33
39 | 1, 038
1, 040 | 531
831 | 484
471 | 1, 076
1, 040
424 | 9. 6 | | | 2, 920
3, 110 | 3. 97
4, 23 | 200
402 | 92
85 | 1220 | | 240
264
209 | 116 | 43 | 430 | 624 | 196 | 424
480
370 | 3.1 | | | 1,576 | 2. 14 | 466 | 67 | 1222
1223
1224 | | Analysis No. | Source | Location | Date sampled | Depth of well (feet) | Yield (gallons
per minute) | Temperature (°F.) | |--------------------------------------|---|--|--|----------------------------|-------------------------------|----------------------------| | 1225
1226
1227
1228
1229 | Driven observation well—Con,
USGS 325.
USGS 325.
USGS 325.
USGS 326.
USGS 326. | SW¼NE¼ sec. 18dododododododo. | May 25, 1940
Dec. 9, 1940
Oct. 28, 1943
May 27, 1940
Dec. 9, 1940 | 14
14
14
14
14 | | 61
68 | | 1230
1231
1232
1233
1234 | USGS 326 | do
NE¼NW¼ sec. 18
NE¼SW¼ sec. 18
dodo | Oct. 28, 1943
Feb. 3, 1940
June 20, 1940
Apr. 14, 1943
Mar. 31, 1944 | 14
66
66
66 | 20 | 70
61
63
63 | | 1235
1236
1237
1238
1239 | Seepage in Gila River channel Driven observation well, 5-2 5-3 | NE¼SE¼ sec. 18
NW¼SE¼ sec. 18
NE¼SW¼ sec. 18
SE¼NE¼ sec. 18
do | Sept. 11, 1941
July 30, 1943
do
dodo | | 50
1
2
3 | 64
64
66
66 | | 1240
1241
1242
1243
1244 | 5-6 | NE¼NE¼ sec. 18
NE¼SE¼ sec. 18
do
SE¼NE¼ sec. 18 | do
Sept. 13, 1943
Aug. 17, 1943
July 30, 1943 | | 3. 5
1
4
8
2 | 63
66
66
66
65 | | 1245
1246
1247
1248
1249 | 5-10 | do
NE¼NE¼ sec. 18
do
SE¼NE¼ sec. 18
dodo | Aug. 17, 1943
July 30, 1943
dodo | | 3
5
2 | 63
65
66
67
67 | | 1250
1251
1252
1253
1254 | 5-16.
5-18.
5-18.
5-19. | NE¼NE¼ sec. 18
SW¼NE¼ sec. 18
dododo | Aug. 17, 1943
Apr. 2, 1943
July 30, 1943
Oct. 12, 1943
Aug. 17, 1943 | 18.7
18.7
18.7 | 3
8
5
8
4 | 64
67
65
64 | | 1255
1256
1257
1258
1259 | 5-20 | NW¼NE¼ sec. 18dodo
SW¼NE¼ sec. 18 | Aug. 19, 1943 | | 2
2
1.5
3 | 65
62
64
63
66 | | 1260
1261
1262
1263
1264 | 5-25 | do | Aug. 20, 1943
Aug. 17, 1493
Oct. 27, 1943
Jan. 4, 1944 | | 3
12
6
8 | 63
63
67
66
62 | | 1265
1266
1267
1268
1269 | 5-27.
5-28.
5-29.
5-29.
5-29. | do | Feb. 9,1944
July 29,1943
Aug. 19,1943
Oct. 27,1943
Jan. 4,1944 | | 2
8
1
2 | 62
66
49 | | 1270
1271
1272
1273
1274 | 5-29 | NE¼NW¼ sec. 18 | Feb. 29, 1944
May 2, 1944
Aug. 5, 1943
Aug. 20, 1943 | | 4
4
4
.5
8 | 51
54
66
68 | | 1275
1276
1277
1278
1279 | 5-36
5-36
5-36
5-39
5-40 | do
do
SE¼NW¼ sec. 18
do | July 10, 1944
Aug. 29, 1944
Oct. 27, 1944
Aug. 2, 1943
Aug. 5, 1943 | | 1
5
3
2
4 | 65
68
67
66
65 | | 1280
1281
1282
1283
1284 | 5-41
5-42
5-42
5-42
5-42
5-42 | | | 19
19
19
19 | 6
7
6
5 | 64
76
73
60 | between the mouth of Bonita Creek near Solomonsville and the Southern Pacific Railat Calva—Continued [Analyses in parts per million] | Analysis No. | Source | Location | Date sampled | Depth of well (feet) | Yield (gallons
per minute) | Temperature (°F.) | |--|--|--|---|----------------------------|-------------------------------|----------------------------| | 1285
1286
1287
1288
1289 | Driven observation well—Con. 5-42 | NE¼NW¼ sec. 18dododododododo | Feb. 29, 1944
May 2, 1944
July 10, 1944
Aug. 29, 1944
Oct. 27, 1944 | 19
19
19
19
19 | 8
8
8
6 | 54
56
71
77
74 | | 1290
1291
1292
1293
1294 | 5-45.
5-47.
5-54.
5-61.
5-70. | SW1/NW1/ sec. 18
NW1/NW1/ sec. 18
do
SE1/SE1/ sec. 18
NE1/NE1/ sec. 18 | Aug. 2, 1943
Aug. 20, 1943
Aug. 5, 1943
Aug. 9, 1943
Aug. 6, 1943 | | 2
5
3
11
1 | 65
65
63
65
71 | | 1295
1296
1297
1298
1299 | 5-73.
5-74.
5-76.
5-77.
5-78. | SE¼SE¼ sec. 18
SW¼SE¼ sec. 18
NE¼SW¼ sec. 18
SE¼SW¼ sec. 18
SW¼SE¼ sec. 18 | Aug. 9, 1943
do
Aug. 20, 1943
Aug. 9, 1943
do | | 12
3
3
8
10 | 65
68
65
66
67 | | 1300
1301
1302
1303
1304 | Arthur Lines irrigation well, USGS 331 | NW¼NW¼ sec. 19do
SW¼NW¼ sec. 19
NE¼NW¼ sec. 19 | July 30, 1940 Apr. 29, 1943 Mar. 31, 1944 Apr. 29, 1943 July 30, 1940 | | 330
530
987 | 63 | | 1305
1306
1307
1308
1309 | Mattice Bros. irrigation well
Pima city well
Driven observation well, 4-78
5-72 | SW14NE14 sec. 19
SW14NW14 sec. 19
NE14SE14 sec. 19
NE14NE14 sec. 19
NE14NW14 sec. 19 | Mar. 31, 1944
May 11, 1943
Aug. 9, 1943
———————————————————————————————————— | | 12
11
5 | 65
66
66
67 | | 1310
1311
1312
1313 | 5-79
George Reynolds domestic welldo
Vance Marshall irrigation well,
US GS 337. | SW¼NE¼ sec. 19
SE¼SW¼ sec. 20
do
NE¼NE¼ sec. 20 | Aug. 9, 1943
Mar. 28, 1940
Feb. 25, 1943
July 23, 1940 | 19.8
19.8
53 | 8 | 66

65 | | 1314
1315
1316
1317
1318
1319 | dododo | do | May 2, 1944
Mar. 2, 1943
Aug. 19, 1943
July 22, 1943 | 53 | 8
3
3 | 63
 | | 1320
1321
1322
1323
1324 | 4-4.
4-4.
4-4.
4-4. | do | do
Oct. 27, 1943
Jan. 4, 1944
Feb. 29, 1944
May 2, 1944 | | 3
10
10
10
10 | 66
67
65
64
64 | | 1325
1326
1327
1328
1329 | 4-4.
4-4.
4-5.
4-5. | NE¼SE¼ sec. 20 | July 10, 1944
Aug. 29, 1944
Oct. 27, 1944
Aug. 13, 1943
Oct. 29, 1943 | | 8
6
4
8
3 | 67
70
69
67
68 | | 1330
1331
1332
1333
1334 | 4-5.
4-5.
4-6.
4-6.
4-7.
4-7. | do | Jan. 5, 1944
Mar. 1, 1944
May 3, 1944
July 11, 1944
Aug. 30, 1944 | | 5
8
4
3
5 | 63
60
59
64
66 | | 1335
1336
1337
1338
1339 | 4-5.
4-6.
4-7.
4-8.
4-9. | SE¼NE¼ sec. 20
do
NE¼NE¼ sec. 20 | Oct. 27, 1944
July 22, 1943
Aug. 14, 1943
do
July 22, 1943 | | 6
2
5
8
3 | 68
66
68
63 | between the mouth of Bonita Creek near Solomonsville and the Southern Pacific Railat Calva—Continued | Analysis No. | Source | Location | Date sampled | Depth of well (feet) | Yield (gallons
per minute) | Temperature (°F.) | |--------------------------------------
--|--|---|----------------------|-------------------------------|----------------------------| | 1340
1341
1342
1343
1344 | Driven observation well—Con. 4-10 | SW¼NE¼ sec. 20
SE¼NE¼ sec. 20
NE¼NE¼ sec. 20
dodo | July 22, 1943
Aug. 13, 1943
July 22, 1943
do
Aug. 10, 1943 | | 28228 | 66
67
65
66
65 | | 1345
1346
1347
1348
1349 | 4-15 | SW1/NE1/4 sec. 20 do | July 22, 1943
Aug. 13, 1943
Aug. 16, 1943
do
July 27, 1943 | | . 3
8
8
8 | 69
67
66
67 | | 1350
1351
1352
1353
1354 | 4-20 | do
do
do
NE¼NW¼ sec. 20 | July 29, 1943
Aug. 16, 1943
Aug. 17, 1943
Aug. 28, 1943
July 29, 1943 | | 2
8
8
3
2 | 64
67
70
62
64 | | 1355
1356
1357
1358
1359 | 4-30 | do | Aug. 16, 1943
July 29, 1943
do
Sept. 22, 1943 | | 3
5
3
6 | 66
64
64
62 | | 1360
1361
1362
1363
1364 | 4-69 | do | Aug. 20, 1943
Aug. 9, 1943
Oct. 9, 1943
Sept. 22, 1943
Aug. 9, 1943 | | 2
9
5
2
6 | 69
65

64 | | 1365
1366
1367
1368
1369 | 4-74 | SW/4NE/4 sec. 20
SE/4NW/4 sec. 20
SW/4NW/4 sec. 20
NW/4NW/4 sec. 20
NW/4SW/4 sec. 21 | do
do
do
do
Dec. 27,1943 | | 13
10
2
12 | 65
66
68
63 | | 1370
1371
1372
1373
1374 | do 2do 2do 2do 2do 2do 2do 2do 5Driven well 100 ft. north of T-6Driven well 100 ft. south of T-6 | do
do
do
SW¼NW¼ sec. 21
NW¼SW¼ sec. 21 | Dec. 28, 1943do Dec. 27, 1943do | 12
12 | | 66
66 | | 1375
1376
1377
1378
1379 | Bored observation well, T-6 2 | do | Jan. 17, 1944
dodo
Jan. 18, 1944 | | | | | 1380
1381 | Seepage from left bank of Gila | do
SE¼SE¼ sec. 21 | do
Sept. 11, 1941 | | 5 | | | 1382
1383
1384 | River. Driven observation well, 2-55 3-8 | NE¼SE¼ sec. 21
SE¼SE¼ sec. 21
dodo | Aug. 19, 1943
July 20, 1943
Aug. 19, 1943 | | 4
: | 65
67
73 | | 1385
1386
1387
1388
1389 | 3-10 | do
do
dodo | July 20, 1943
Aug. 18, 1943
July 21, 1943
July 20, 1943
July 21, 1943 | | 8
3
2 | 70
66
66
65 | | 1390
1391
1392
1393
1394 | 3-15 | dododo | Aug. 20, 1943
July 20, 1943
Aug. 14, 1943
do
July 21, 1943 | | 2
8
8
3 | 68
64
66
70
63 | ² Samples collected at intervals during a pumping test. between the mouth of Bonita Creek near Solomonsville and the Southern Pacific Railat Calva—Continued [Analyses in parts per million] | | | | | | | es un ba | | | | | | | | | |--|--------------|-------------------|-----------------------------|-----------------------|---------------|----------------------------------|--------------|----------------------------|---------------------------|----------------------|-----------------------|--|----------------|--------------------------------------| | Specific conductance (KX10* at 25 °C.) | Calcium (Ca) | Magnesium
(Mg) | Sodium and potassium (Na+K) | Bicarbonate
(HCO3) | Sulfate (SO4) | Ohloride (Cl) | F) | Nitrate (NO ₃) | Borate (BO ₃) | Diss
sol | olved
ids | Total hardness
as CaCO ₃ | Percent sodium | Analysis No. | | 8H~ | l ä | nig (3 | 84 | وم | S. | 9 | Fluoride (F) | 6 | (e | , a | Tons per
acre-foot | F C | 1.8 | [2] | | 0 8 E | 💆 | e g | | 1 2 8 | Ę. | 끝 | 1 2 | 1 🕉 | 22 | Parts per
million | ă,ă | FO | l ğ | 88 | | 3 D G | 5 | B | i ğ·ğ | õ | <u>#</u> | 1 2 | 8 | 1 5 | 8 | Ki | 2 £ | 12 S | 2 | 1 | | S S | ၂ ပီ | Σ̈́ | 88 | 1 22 | l 2 | 5 | Ē | 1 2 | l & | & # | 128 | l e | l a | ₹ | | | | | | <u> </u> | | | | | | | | | | | | İ | | l | | | ļ | | 1 | F | 1 | | | | 1 | ł | | 216 | 1 | | | | 1 | 590 | 1 | ŀ | 1 | 1 | 1 | | l | 1340 | | 329 | | | | | | 605 | | | | | | | | 1340
1341 | | 316
329
326
373
246 | | | | | | 605
605
775 | | | | | | | | 1342
1343 | | 373 | | | | | | 775 | | | | | | | | 1343 | | 246 | | | | | | 455 | | | | | | | | 1344 | | 217 | 106 | 39 | 552 | 556 | 262 | 815 | ١. | 36 | ĺ | 1,884 | 2.56 | 425 | 74 | 1345 | | 337 | 100 | 99 | 002 | 000 | 202 | 615
645 | | 1 00 | | 1,004 | 2.00 | 120 | 1- | 1346 | | 317
337
341
398
282 | | | | | | 645
800
500 | | | | | | | | 1347
1348 | | 398 | | | | | | 800 | | | | | | | | 1348 | | 282 | | | | | | 500 | | | | | | | | 1349 | | 331 | 1 | l | [| | | 690 | | 1 | | | | | l | 1350 | | 331
349 | | | | | | 620
695
550 | | | | | | | | 1351 | | 296
387 | | | | | | 550 | | | | | | | | 1352 | | 387 | | | | | | 790 | | | | | | | | 1350
1351
1352
1353
1354 | | 296 | |] | | | | 530 | | | | | | - | | 1354 | | 338 | 1 | | | | 1 | 655 | 1 | | | | [| | | 1355 | | 333 | | | | | | 645 | | | | | | | | 1356 | | 302 | | | | | | 570 | | | | | | | | 1357 | | 338
333
302
272
320 | | | | | | 645
570
490
570 | | | | | | | | 1355
1356
1357
1358
1359 | | | | | | | | 570 | | | | | | | | | | 321
256
286
296
246 | 1 | ļ | 1 | | | 645 | l | | ļ | | l | 1 | | 1360
1361
1362
1363
1364 | | 256 | | | | | | 645
460 | | | | | | | | 1361 | | 286 | | | | | | 540 | | | | | | | | 1362 | | 296 | 86 | 41 | 512 | 530 | 226 | 555 | 3. 1 | 45 | 7.5 | 1, 729 | 2. 35 | 383 | 74 | 1363 | | | | | | | | 455 | | | | | - | | | | | 292
254
252
320
396 | | | | | i | 550 | _ | | | | | l | | 1365
1366
1367
1368
1369 | | 254 | | | | | | 445 | | | | | | | | 1366 | | 252 | | | | | | | | | | | | | | 1367 | | 320 | | | | 650 | | 580
780 | | | | | | | | 1368 | | 990 | | | | | | 780 | | | | | | | | | | 405 | 126 | 51 | 783 | 824 | 367 | 810 | 4.2 | 20 | 14 | 2, 570 | 3, 50 | 524 | 76 | 1370
1371
1372
1373
1374 | | 405
410 | | | | | | 810
815 | | | - <u>-</u> | | | | | 1371 | | 418
581
356 | | | | | | 830 | | | | | | | 83 | 1372 | | 256 | 114
67 | 62
35 | 1, 230
739 | 1, 242
782 | 512
284 | 1,160
685 | 4.8
4.7 | 6. 9
1. 0 | 18
12 | 3, 700
2, 200 | 5.03
2,99 | 540
311 | 84 | 1374 | | | 0' | 99 | 109 | 102 | 204 | 000 | 4. / | 1.0 | 12 | 2, 200 | 2, 99 | 311 | 01 | 1012 | | 385
389
401 | | | | | | 780
800 | | | | | | | | 1375
1376 | | 389 | | <u>-</u> | | | | 800 | | | | | | | | 1376 | | 401
403 | | | | | | .820
840 | | | | | | | | 1377
1378
1379 | | 403
417 | | | | | | 840 | | | | | | | | 1379 | | | | | | | - | | - | | | | | | | | | 411
387 | | | | | | 930 | | | | | | | | 1380
1381 | | 387 | 87 | 47 | 718 | 443 | 384 | 850 | 2. 2 | 5.0 | - | 2, 311 | 3.14 | 410 | 79 | 1381 | | 338 | 1 | | | | | 615 | | | | | | | | 1389 | | 338
291
283 | | | | | | 585 | | | | | | | | 1382
1383
1384 | | 283 | | | | | | 585
530 | | | | | | | | 1384 | | | , | | | | | | | | | | | | | | | 256 | | | | | | 455 | - | | | | | | | 1300 | | 256
160
320 | | | | | | 255 | | | | | | | | 1385
1386
1387
1388 | | 254
355 | 128 | 29 | 408 | 514 | 227 | 470 | | 5.3 | | 1,520 | 2.07 | 438 | 67 | 1388 | | 355 | | | | | | 675 | | | | | | | | 1389 | | 949 | l | | | | 1 | 000 | ! | | | | | | | 1200 | | 217 | | | | | | 870 | | | | | | | | 1301 | | 368 | | | | | | 695 | | | | | | | | 1392 | | 343
217
368
317
358 | | | | | | 670
380
695
59 5 | | | | | | | | 1390
1391
1392
1398 | | 358 | l | | | · | | ' | I | | | | | | | 1394 | | | | | | | | | | | | | | | | | | Analysis No. | . Source | Location | Date sampled | Depth of well (feet) | Yield (gallons
per minute) | Temperature
(°F.) | |--------------------------------------|--|--|--|----------------------|-------------------------------|----------------------------| | 1395
1396
1397
1398
1399 | Driven observation well—Con. 3-20 | NE¼SW¼ sec. 21do
SE¼SW¼ sec. 21
NE¼SE¼ sec. 21
SW¼SW¼ sec. 21 | July 20, 1943
July 21, 1943
Aug. 14, 1943
July 20, 1943
July 21, 1943 | | 2
3
8 | 64
69
66
65
67 | | 1400
1401
1402
1403
1404 | 3-26 | do | July 20, 1943
July 21, 1943
do
Aug. 14, 1943 | | 1.5
2.5
2
2
5 | 67
65
65
65
68 | | 1405
1406
1407
1408
1409 | 3-31
3-32
3-33
3-34
3-34 | SW¼NW¼ sec. 21dododododododo | July 21, 1943
dodo
Aug. 14, 1943 | | 1. 5
2
2
2
8 | 69
66
66
64
65 | | 1410
1411
1412
1413
1414 | 3-35
3-35 | do | Oct. 27, 1943
Jan. 4, 1944
Feb. 29, 1944
May 2, 1944
July 10, 1944 | | 2
2
5
4
1 | 66
62
62
63
65 | | 1415
1416
1417
1418
1419 | 3-35 | do | Aug. 29, 1944
Oct. 27, 1944
July 21, 1943
Aug. 14, 1943
Oct. 12, 1943 | | 6
2
.5
8 | 63 | | 1420
1421
1422
1423
1424 | 3-48 | SE¼NW¼ sec. 21do
SE¼NE¼ sec. 21
NW¼SE¼ sec. 21
SW¼NE¼ sec. 21 | Oct. 11, 1943
Aug. 24, 1943
do
Aug. 23, 1943
Aug. 21, 1943 | | 2
4
4
8
.5 | | | 1425
1426
1427
1428
1429 | 2-30 | SW1/SW1/4 sec. 22dododododo | Aug. 10, 1943
Sept. 28, 1943
Aug. 10, 1943
July 16, 1943
Oct. 27, 1943 | | 3
8
 | 68

69
65
70 | | 1430
1431
1432
1433
1434 | 2-33.
2-33.
2-33.
2-34.
2-34. | do
do
do
do | Jan. 4, 1944
Feb. 28, 1944
May 2, 1944
July 20, 1943
July 10, 1944 | |
10
15
10
6 | 68
65
64
 | | 1435
1436
1437
1438
1439 | 2-34 | do | Aug. 29,1944
Oct. 27,1944
Aug. 10,1943
Aug. 16,1943
July 19,1943 | | 5
5
8
 | 67
70
67
69
65 | | 1440
1441
1442
1443
1444 | 2-38 | NE14SW14 sec. 22
SW14SW14 sec. 22
do
NW14SW14 sec. 22
NE14SW14 sec. 22 | Aug. 12,1943
—do
July 19,1943
Aug. 19,1943 | | 8
5
3 | 67
63
71
64 | | 1445
1446
1447
1448
1449 | 2-43 | SW1/SW1/4 sec. 22
do
NW1/SW1/4 sec. 22
SW1/SW1/4 sec. 22
do | Aug. 13,1943
July 19,1943
do
Aug. 12,1943
July 19,1943 | | 8
8 | 67
70
65
65
67 | | 1450
1451
1452
1453
1454 | 2-48
2-51
2-58
Wallace and Palmer irrigation well
do | NW¼SW¼ sec. 22
SE¼SE¼ sec. 22do.
SE¼NW¼ sec. 22do. | do
do
Aug. 19, 1943
Aug. 10, 1940
Aug. 13, 1941 | 73
73 | 2 | 65
65
67
70
69 | between the mouth of Bonita Creek near Solomonsville and the Southern Pacific Railat Calva—Continued | | | | _ | | | | | | | | | | | | |--|--------------|-------------------|----------------------------------|-----------------------|---------------|---------------------------------|--------------|----------------------------|--------------|----------------------|-----------------------|----------------------------|----------------|--------------------------------------| | Specific conduct-
ance (K×10 ^s at
25° C.) | Calcium (Ca) | Magnesium
(Mg) | Sodium and po-
tassium (Na+K) | Bicarbonate
(HCO3) | Sulfate (SO4) | Obloride (CI) | Fluoride (F) | Nitrate (NO ₃) | Borate (BO3) | Disso
soli | | Total hardness
as CaCO3 | Percent sodium | Analysis No. | | 8M~ |) d | ii. | 86 | ခိုင် | 8 |)
e |) e | 6 | 1 8 | ងក | Tons per
acre-foot | E E |) is | S | | 3°0 | | Age | 88 | 널 | 123 | 둳 | 1d | Ę. | و ا | Parts per
million | ă, | Ğ₽ | l Ħ | 38 | | 25 ec. | ig . | <u> </u> | Str | 30 | lg | ᅙ | 101 | ta ta | <u> </u> | 光 | នួមួ | ta
as | ខ្ន | la. | | 1 g a 2 | l g | ğ | ုင္ငံ နွ | 3.1 | 뛽 | [중 | lē | 12 | ۱ & | E H | 2 8
2 8 | 1 4 | ایھا | 1 7 | | | | | | | | | | | / | | | | | | | 1 | 1 . | | | | i | | 1 | Ì | | 1 | 1 | l | ł | t | | 910 | | ĺ | | | | 270 | | İ | | ţ | l | | 1 | 1395
1396
1397
1398
1399 | | 373 | | | | | | 705 | | | | | | | | 1396 | | 210
373
350
253
372 | | | | | | 370
705
660
475
695 | | | | | | | | 1397 | | 253 | | | | | | 475 | | | | | | | | 1398 | | 372 | | | | | | 695 | | | | | | | | 1399 | | 374 | | l | | l | | į | | | L | | | | | 1400 | | 374
352
237 | | | | | | 695
410
655
665 | | | | | | | | 1400
1401
1402
1403
1404 | | 237 | | | | | | 410 | | | | | | | | 1402 | | 348
356 | 98 | 40 | 663 | 692 | 321 | 655 | 3. 1 | 21 | 1.0 | 2, 142 | 2. 91 | 409 | 78 | 1403 | | • | | | | - | | 665 | | | | | | | | 1404 | | 354 | | | | | | | | <u> </u> | | | L | | | 1405 | | 364 | | | | | | | | | | | | | | 1406 | | 249 | | | | | | 450 | | | | | J | | | 1407 | | 354
364
249
348
183 | | | | | | 655
280 | | | | | | | | 1407
1408
1409 | | | | | | | | i | | | 1 | | | 1 | - | 1 | | 193
206
216
225
211 | 103 | 31 | 298 | 482 | 180 | 300
350
375
385
330 | 2. 3 | 26 | 4.0 | 1, 180 | 1,60 | 384 | 63 | 1410
1411
1412
1413 | | 206 | | | | | | 350 | | | | | | | | 1411 | | 216 | | | | | | 375 | | - - | | | | | | 1412 | | 225 | 130 | 34 | 335 | 480 | 222 | 385 | 1.9 | 24 | 3.0 | 1, 370 | 1.86 | 464 | 61 | 1413 | | | | | | | | 330 | | | | | | | | | | 222
237
350
337
216 | | | | | | 370
420 | | | | | | | | 1415
1416
1417
1418
1419 | | 237 | | | | | | 420 | | | | | | | | 1416 | | 350 | | | | | | | | | | | | | | 1417 | | 216 | | | | | | 630
405 | | | | | | | | 1410 | | | | | | | | *00 | | | | | | | | 1410 | | 189
180
219
256 | | | | | | 295 | | | | | | | | 1420 | | 180 | | | | | | 315
390 | | | | | | | | 1421 | | 219 | | | | | | 390 | | | | | | | | 1422 | | 482 | | | | | - | 455
1,080 | | - | | | | | | 1421
1422
1423
1424 | | 1 | | | | | | 1 | | | | | | | | 1121 | | 361 | | | | | | 710 | | | | | | | | 1425 | | 341 | | | <i>-</i> | 668 | | 680 | | | | | | | | 1426 | | 257 | 78 | 22 | 474 | 428 | 230 | 500 | 6.9 | 1.0 | 1.6 | 1, 523 | 2.07 | 285 | 78 | 1426
1427
1428 | | 361
341
342
257
299 | | | *** | 720 | 200 | 710
680
605
500
575 | 0.0 | 1.0 | 1.0 | 1, 025 | 2.01 | 200 | | 1429 | | | | | | | | 1 | | | | | | | | 1 | | 336
319
304
333
280 | 144 | 47 | 582 | 622 | 350 | 660
610 | 4.6 | .5 | 10 | 2,090 | 2.84 | 553 | 70 | 1430
1431 | | 304 | | | | | | 575 | | | | | | | | 1431 | | 333 | | | | | | 625 | | | | | | | | 1433 | | 280 | | | | | | 575
625
485 | | | | | | | | 1432
1433
1434 | | 1 | 1 | l | | 1 | l | | | | 1 | | | | | | | 285
282
364 | | | | | | 480
475
695 | | | | | | | | 1435
1436 | | 364 | | | | 648 | | 695 | | | | | | | | 1437 | | 251
321 | | | | | | 1 | | | | | | | | 1437
1438 | | 1 | | | | | | 615 | | - - | | | | | | 1439 | | 347 | 1 | | | 1 | l | | 1 | | | | | | | 1440 | | 287 | | | | | | 515 | | | | | | | | 1441 | | 347
287
210
370
341 | | | | | | 515
410
725 | | | | | | | | 1440
1441
1442
1443
1444 | | 370 | 120 | 33 | 687 | 634 | 371 | 725 | | 1.0 | | 2, 249 | 3.06 | 435 | 77 | 1443 | | | | | | | | | | | | | | | | 1444 | | 217 | | | | | | 405 | | | | | | | | 1445 | | 194 | | | | - | | 390 | | | | | \ | | | 1445
1446
1447 | | 368 | | | | | | 405
390
740
520 | | | | | | | | 1447 | | 217
194
368
295
227 | | | | | J | 520 | | | | | | | | 1448
1449 | | | | | | | | 450 | | | | | | | | 1229 | | 150 | 92 | 24 | 198 | 324 | 127 | 255 | | .5 | | 856 | 1.16 | 328 | 57 | 1450 | | 150
304
353 | | | | | | 255
575
735
762 | | | | | | | | 1450
1451 | | 353 | | | | | | 735 | | | | | | | | 1 1482 | | 390
423 | 91 | 34 | 830 | 584
581 | 450
481 | 762
825 | 3.0 | 28 | | 2, 580 | 3. 51 | 218
367 | 83 | 1453
1454 | | , 200 | . 01 | . 07 | . 000 | . 001 | 401 | 020 | 0.0 | 40 | | 2,000 | J. UI | . 901 | - 00 1 | TIVE | | Analysis No. | Source | Location | Date sampled | Depth of well (feet) | Yield (gallons
per minute) | Temperature (°F.) | |--------------------------------------|--|--|---|----------------------|-------------------------------|----------------------------| | 1455
1456
1457
1458
1459 | Wallace and Palmer irrigation well. Ed Howard irrigation well. Driven observation well, 1-63 | SE¼NW¼ sec. 22
SW¼SW¼ sec. 23
SW¼SW¼ sec. 25
SW¼SE¼ sec. 26
do | Feb. 26, 1943
July 13, 1940
Aug. 17, 1943
Aug. 9, 1943
July 13, 1943 | 73
90 | 11
8
5 | 69
65
66
64 | | 1460
1461
1462
1463 | 1-33 | do
do
SE¼SW¼ sec. 26
do | Aug. 9, 1943
Aug. 10, 1943
July 14, 1943
July 13, 1943 | | 8
8
2
15 | 67
67
67
65 | | 1464 | 1–37 | NE¼SW¼ sec. 26 | do | | 10 | 66 | | 1465
1466
1467
1468
1469 | 1;39 | SE4SW4 sec. 26
NE4SW4 sec. 26
SE4SW4 sec. 26
do
NW4SW4 sec. 26 | Aug. 10, 1943
July 14, 1943
July 13, 1943
July 14, 1943 | | 5
2
10
5 | 64
66
65
65
64 | | 1470
1471
1472
1473
1474 | 1-44 | SW14SW14 sec. 26dododododododo. | do
do
do | | 10
1
5
 | 65
68
65
67
65 | | 1475
1476
1477
1478
1479 | 1-49 | NW¼SW¼ sec. 26
SW¼SW¼ sec. 26
do
NW¼SW¼ sec. 26 | July 13, 1943
July 14, 1943
July 13, 1943
 | | 1
10
8 | 68
65
66
64 | | 1480
1481
1482
1483
1484 | 1-55 | do
do
do
do | July 13, 1943
Aug. 18, 1943
Oct. 27, 1943
Jan. 4, 1944
Feb. 28, 1944 | | 10
6
5
8
10 | 66
67
67
65
63 | | 1485
1486
1487
1488
1489 | 1-55 | do
do
do
SE¼SE¼ sec. 26 | May 2, 1944
July 10, 1944
Aug. 29, 1944
July 13, 1943
Aug. 17, 1943 | | 8
6
8
5
1 | 62
64
67
65
67 | | 1490
1491
1492
1493
1494 | 1-65 | do
SW¼NW¼ sec. 26
NW¼NW¼ sec. 26
NE¼SW¼ sec. 26 | Aug. 18, 1943
Aug. 23, 1943
Aug. 17, 1943
Aug. 23, 1943
Aug. 11, 1943 | | 3
2
9
2
8 | 64
66
67 | | 1495
1496
1497
1498
1499 | 1-78. Old Stewart Springdo | do
NW¼NE¼ sec. 26
do
NE¼NE¼ sec. 26
SE¼NE¼ sec. 27 | Oct. 8, 1943
May 2, 1940
Feb. 14, 1941
 | 14 | 8
8
1 | 63
73
66 | | 1500
1501
1502
1503
1504 | do
USGS 347 | do
do
SE¼SE¼ sec. 27
do | Oct. 28, 1943
May 24, 1940
July 13, 1943
do | 14
13
 | 10
5
5 | 70

70
67
66 | | 1505
1506
1507
1508
1509 | 2-4 | NE¼SW¼ sec. 27
NE¼SE¼ sec. 27
SE¼NE¼ sec. 27
do
SE¼SE¼ sec. 27 | Aug. 11,1943
July 15,1943
July 13,1943
Aug. 10,1943
July 13,1943 | | .5
8 | 75
74
67
68 | | 1510
1511
1512
1513
1514 | 2-8 | do | Aug. 11, 1943do July 15, 1943do July 16, 1943 | | 8
3 | 66
65
64
69
64 | between the mouth of Bonita Creek near Solomonsville and the Southern Pacific Railat Calva—Continued [Analyses in parts per million] | Specific conductance (K×10° at 25° C.) | Calcium (Ca) | Magnesium
(Mg) | Sodium and po-
tassium (Na+K) | Bicarbonate (HCO3) | Sulfate (SO4) | Chloride (Cl) | Fluoride (F) | Nitrate (NO3) | Borate (BO ₃) | Parts per
million | Tons per acre-foot | Total hardness
as CaCOs | Percent sodium | Analysis No. |
--|----------------|-------------------|----------------------------------|--------------------|-------------------|---------------------------------------|--------------|---------------|---------------------------|----------------------------|-------------------------|----------------------------|----------------|--------------------------------------| | | 138 | 51 | 972 | 632
524 | 769
350 | 940 | 4.0 | 17 | 8.0 | 3, 200 | 4. 35 | 554
255 | 79 | 1455
1456
1457 | | 506
339
280
265
210 | | | | | | 675
545
505
355 | | | | | | | | 1457
1458
1459 | | 268 | | | | | | 510
330
495 | | | | | | | | 1460
1461
1462 | | 200
260
213 | | | | | | 495
375 | | | | | | | | 1462
1463 | | 201 | | | | 552 | | 335
400 | | | | | | | | 1464
1465 | | 237
195
326
224 | | | | | | 665 | | | | | | | | 1465
1466
1467
1468
1469 | | 219 | | | | | | 345 | | | | -3 | | | | 1 | | 230
228
313
370
228 | 205 |
51 | 565 | 612 | 321 | 630
785
375 | 2.3 | 1.0 | .8 | 2, 232 | 3. 04 | 721 | 63 | 1470
1471
1472
1473
1474 | | 245
285
219 | | | | | | 455
555 | | | | | | | | 1475
1476
1477 | | 219
205
306 | | | | | | 370
620 | | | | | | | | 1477
1478
1479 | | | 169 | 41 | 469 | 592 | 286 | 585
495 | | 2.0 | | 1,844 | 2. 51 | 590 | 63 | 1480
1481
1482
1483 | | 302
278
235
233
244 | 112 | 33 | 390 | 584 | 202 | 405
400
430 | 3. 5 | . 5 | 8. 0 | 1,430 | 1. 94 | 415 | 67 | 1482
1483
1484 | | 261
254
252
290
324 | | | | | | 475
440
445 | | | | | | | | 1485
1486
1487
1488 | | | | | | | | 540
670 | | | | | | | | 1489 | | 258
236
395 | | | | | | 495
445
775
600 | | | | | | | | 1490
1491
1492 | | 310
251
243 | | | | | | 490 | | | | | | | | 1493
1494
1495 | | 243
460
437
443
330 | 50
59
64 | 17
14
14 | 941
884
914 | 187
242
248 | 500
454
490 | 455
1,110
1,020
1,040
646 | 6. 3
9. 0 | | | 2, 710
2, 560
2, 650 | 3. 69
3. 48
3. 60 | 195
205
217 | 91
90
90 | 1495
1496
1497
1498
1499 | | 361
270
216
225
201 | 46 | 39 | 457 | 156 | 255 | 725
620
405 | | | | 1, 494 | 2. 02 | 275 | 78 | 1500
1501
1502
1503
1504 | | 201
284
295 | 78 | 22 | 335 | 436
334 | 155 | 350
645
580 | | 1.5 | | 1, 156 | 1. 57 | 285 | 72 | 1505 | | 295
316
384
233 | | | | | | 580
665
655
460 | | | | | | | | 1506
1507
1508
1509 | | 230
222
260 | | | | | | 385
395
525 | | | | | | | | 1510
1511 | | 260
240
267 | | | | | | 525
480 | | | | | | | | 1512
1513
1514 | | Analysis No. | Source | Location | Date sampled | Depth of well (feet) | Yield (gallons
per minute) | Temperature (°F.) | |--------------------------------------|--|---|---|----------------------|-------------------------------|----------------------------| | 1515
1516
1517
1518
1519 | Driven observation well—Con. 2-14 2-15 2-16 2-17 2-18 | NW¼SE¼ sec. 27do.
SWNE¼ sec. 27do.
NW¼NE¼ sec. 27 | Aug. 11, 1943
July 15, 1943
Aug. 11, 1943
July 15, 1943 | | 8 | 65
66
72
68 | | 1520
1521
1522
1523
1524 | 2-19 | NE4NE4 sec. 27
SW4NE4 sec. 27
NW4NE4 sec. 27
do
SE4NW4 sec. 27 | July 16, 1943
Aug. 11, 1943
do
July 16, 1943
Sept. 27, 1943 | | 8
8 | 67
65
70
67 | | 1525
1526
1527
1528
1529 | 2-26 | NW4NE4 sec. 27
NE4NW4 sec. 27
do
NW4NW4 sec. 27
do | July 16, 1943
do
July 19, 1943
Aug. 12, 1943 | | 2
8 | 65
68
69
66 | | 1530
1531
1532
1533
1534 | 2-49 | SE1/NE1/4 sec. 27
NW1/NE1/4 sec. 27
NW1/4 SE1/4 sec. 27
SW1/4 NW1/4 sec. 27
SE1/4 SE1/4 sec. 27 | Oct. 11, 1943
Aug. 11, 1943
Sept. 27, 1943
Aug. 6, 1943
Aug. 18, 1943 | | 1.5
8
2
8 | 64
69
65
68 | | 1535
1536
1537
1538
1539 | 2-68 | SW¼SE¼ sec. 27dodo
NW¼SE¼ sec. 27
SE¼SW¼ sec. 27 | July 26, 1943
Aug. 6, 1943
do
do | | 8
5
12
13 | 66
67
66
65
65 | | 1540
1541
1542
1543
1544 | USGS 347
USGS 348
USGS 349
USGS 350
USGS 351 | SE¼NE¼ sec. 27
do
NE¼SE¼ sec. 27
do
SE¼SE¼ sec. 27 | Oct. 28, 1943
May 24, 1940
dodo
Oct. 28, 1943 | 13
14
14
14 | | 68
66
68
68 | | 1545
1546
1547
1548
1549 | USGS 352. Ned Daley irrigation welldo. W. T. Watson domestic welldodo | do
do
SW¼NW¼ sec. 27
do | May 24, 1940
June 20, 1940
Apr. 19, 1943
Mar. 28, 1940
Feb. 25, 1943 | 14

12
12 | 700 | 65
66
63 | | 1550
1551
1552
1553
1554 | Seepage in Gila River channeldoRabb and Watson irrigation welldoSmithville Canal Co. well, USGS 358. | NE¼NW¼ sec. 27
NW¼NE¾ sec. 27
SW¼SW¼ sec. 27
do
SE¼SE¼ sec. 28 | Sept. 11, 1941
 | 82 | 20
100 | 64
65 | | 1555
1556
1557
1558
1559 | do | do
SW¼SE¼ sec. 28
dosE¼SE¼ sec. 28 | Apr. 12, 1943
Mar. 17, 1944
May 1, 1943
Mar. 31, 1944
Mar. 17, 1944 | 82
82 | | 65
65 | | 1560
1561
1562
1563
1564 | H. L. Norton well | SW¼NE¼sec. 28
SE¼NE¼ sec. 28
SE¼SE¼ sec. 28
NE¼NE¼ sec. 28
do | Feb. 25, 1943
Aug. 10, 1943
Aug. 18, 1943
Oct. 16, 1943 | | 14
8
8
8 | 67
66
63
62 | | 1565
1566
1567
1568
1569 | 3-5 | do | do
Aug. 12, 1943
July 21, 1943
do
Sept. 22, 1943 | | 8
8
3
1. 5 | 65
66
64
65 | between the mouth of Bonita Creek near Solomonsville and the Southern Pacific Railat Calva—Continued [Analyses in parts per million] | 166 250 292 250 498 498 245 498 400 230 288 28 604 624 295 575 23 4.5 1,920 2.61 334 80 265 115 32 458 602 217 490 1.5 .5 1,611 2.19 419 70 176 89 27 257 328 142 332 2.1 5 1,011 1.37 333 63 3304 178 64 615 546 462 775 28 1.6 2,391 3.25 707 65 247 447 240 480 315 275 101 57 431 612 202 485 1.3 31 1.5 1,610 2.19 486 66 269 104 61 422 594 216 485 1.5 35 1.0 1,620 2.20 510 64 263 275 275 1.5 38 1.0 1,620 2.20 510 | | | | | | | a m pe | | | | | | | | | |--|-----------------------------------|-----------------|------------------|------------|---------------|-------------|-------------------|------------|------------|-----------|---------------------|--------------|------------------------|-----------|------------------------------| | 248 546 435 10 1,445 1.07 414 67 260 328 436 436 1.0 1.0 1,445 1.07 414 67 328 322 388 422 223 480 1.0 1,445 1.07 414 67 325 326 328 329 365 328 329 | nduct-
X10s at | (g) | 8 | nd po- | nate
33) | (†0 | CT) | F) | 103) | (80 | Disse
sol | olved
ids | mess
O ₃ | dium | 70. | | 248 546 435 10 1,445 1.07 414 67 260 328 436 436 1.0 1.0 1,445 1.07 414 67 328 322 388 422 223 480 1.0 1,445 1.07 414 67 325 326 328 329 365 328 329 | pecific co
ance (K.
25° C.) | alcium (| Aagnesiu
(Mg) | odium a | icarbo
(HO | ulfate (S | hloride (| luoride (| Titrate (D | 3orate (B | arts per
million | ons per | Potal hare
as CaC | ercent so | Analysis No. | | 2800 | | | - | 00.43 | Н | 02 | | = | 4 | | | - | | | _ | | 246 | 248
260 | | | | 546 | | 435 | | | | | | | | 1515
1516 | | 210 | 240
246 | 113 | 32 | 388 | 436
422 | 223 | 480
480
680 | | 1.0 | | 1, 445 | 1. 97 | 414 | 67 | 1516
1517
1518
1519 | | 210 | 325 | | | | | | | | | | | | | | 1520 | | 191 | 273
210 | | | | | | 485
405 | | | | | | | | 1521
1522
1523 | | 265 264 526 526 526 527 528 538
538 538 538 538 538 538 538 538 538 538 538 538 538 538 538 538 538 538 538 <td>311</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>625</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>152</td> | 311 | | | | | | 625 | | | | | | | | 152 | | 284 | 279 | | | | | | 500 | | | | | | | | 1524 | | 279 | 265 | | | | | | 525 | | | | | | | | 1525 | | 286 | 264
279 | | | | | | 495
515 | | | | | | | | 1526
1527 | | 191 | 286 | | | | | | 520 | | | | | | | | 1527
1528
1529 | | 2211 | | | | | | | i | | | | | | | | | | 285 234 | 191 | | | | | | 365 | | | | | | | | 1530
1531 | | 285 234 | 278 | | | | | | 500 | | | | | | | | 1532
1533 | | 296 316 | 285 | - - | | | | | 495 | | | | | | | | 1533
1534 | | 316 . | | | | | | | | | | | | | | | 1 | | 385 | 296
316 | | | | | | 530 | | | | | | | | 1535
1536 | | 359 | 385 | | | | | | 750 | | | | | | | | 1537
1538 | | 298 150 43 473 523 289 595 2.7 5.0 12 1,820 2.48 552 65 300 203 58 393 568 258 614 1,806 2.46 745 53 169 122 30 17 210 222 91 230 688 | 510
359 | | | | 476 | | 1, 185 | | | | | | | | 1538
1539 | | 198 | | | | | | | | | | | | | | | | | 198 | 298
300 | 150
203 | 43
58 | 473
393 | 523
568 | 289
258 | 614 | 2.7 | 5.0 | 12 | 1,820 | 2.48 | 552
745 | 65
53 | 1540
 1541 | | 198 | 169 | | l | | | | 292 | | | | - - | | | l | 1540
1541
1542
1543 | | 166 | 198 | 30 | 17 | 210 | 222 | 91 | 230
355 | | | | 688 | . 94 | 145 | /6 | 1544 | | 250 | | | | | | | | | | | | | | - | 1545 | | 265 115 32 458 602 217 490 1.5 .5 | 250 | | | | 572 | 180 | 450 | | | | | | 405 | | 1546 | | 265 115 32 458 602 217 490 1.5 .5 | 245
280 | | | | 498 | 210 | 440 | | 97 | | | | | | 1547
1548
1549 | | 390 | 329 | 88 | 28 | 604 | 624 | 295 | 575 | | 23 | 4.5 | 1, 920 | 2. 61 | 334 | 80 | 1549 | | 390 | 265 | 115 | 32 | 458 | 602 | 217 | 490 | 1.5 | 5 | | 1 611 | 2 19 | 419 | 70 | 1550 | | 390 | 176 | 89 | 27 | 257 | 328 | 142 | 332 | 2.1 | . 5 | | 1,011 | 1.37 | 333 | 63 | 1551 | | 247 | 394
390 | 178 | 64 | 615 | 546
506 | 462 | 800 | | 28 | 1.6 | 2, 391 | 3. 25 | 767 | 65 | 1552
1553 | | 269 | 247 | | | | | 240 | 480 | | | | | | 315 | | 1554 | | 269 | | | | İ | | | | | | | | | | | | | 284 98 56 467 598 217 525 1.5 38 1.0 1,700 2.31 475 68 259 128 70 353 552 206 480 1.5 34 .2 1,540 2.09 608 56 393 397 | 275
260 | 101 | 57 | 431 | 612 | 202 | 485 | 1.3 | 31 | 1.5 | 1,610 | 2.19 | 486 | 66 | 1555 | | 284 98 56 467 598 217 525 1.5 38 1.0 1,700 2.31 475 68 259 128 70 353 552 206 480 1.5 34 .2 1,540 2.09 608 56 393 397 | 263 |] | | | | | 485 | | | l | | | | ll | 1556
1557 | | 397 | 284
259 | 98
128 | 56
70 | | 598
552 | | 525
480 | 1.5
1.5 | 38
34 | 1.0 | | 2.31
2.09 | 475
608 | 68
56 | 1558
1559 | | 397 | 05- | | | | | | , | | | | | | | | 1 | | 423 850 850 | 397 | | - | | 1, 174 | | 790 | | - | | | | | | 1560
1561 | | 364 | 423 | | | | | | 850 | | | | | | | | 1562 | | 364 | 291
355 | | | | | | | | | | | | | | 1563
1564 | | 325 580 580 | | | | | | | | | | | | | | | | | | 325 | | | | | | 580 | | | | | | | | $1565 \\ 1566$ | | 348 342 660 660 | 348 | | | | | | | | | | | | | | 1567
1568 | | 416 865 87 | 416 | | | | | | 865 | | | | | | | | 1569 | | Analysis No. | Source | Location | Date sampled | Depth of well (feet) | Yield (gallons
per minute) | Temperature (°F.) | |--------------------------------------|--|--|---|-----------------------|-------------------------------|----------------------| | 1570
1571
1572
1573
1574 | Driven obervation well—Con. 3-57 | NE¼SE¼ sec. 28
NW¼SE¼ sec. 28
SE¼NW¼ sec. 28
NW¼NE¼ sec. 28
SE¼NW¼ sec. 28 | Oct. 11, 1943
Aug. 10, 1943
do
Sept. 27, 1943 | | 2
8
11
10
5 | 66
66
65
66 | | 1575
1576
1577
1578
1579 | 3-62 | NW1/NW1/4 sec. 28
SW1/NW1/4 sec. 28
NW1/4NW1/4 sec. 28
SE1/4NW1/4 sec. 29
dodo | Aug. 18, 1943
Aug. 9, 1943
do
June 22, 1940
Apr. 15, 1943 | | 8
1
5
500 | 68
69
69
66 | | 1580
1581
1582
1583
1584 | Spring at hydraulic ram | SW\\SW\\\ sec. 29
NW\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | Oct. 30, 1940
Feb. 26, 1942
Feb. 25, 1943
Feb. 26, 1942
Mar. 28, 1940 | 22 | 2
 | 67 | | 1585
1586
1587
1588
1589 | G. Chaves domestic well G. Saline irrigation well Wardlaw irrigation well | do
NW¼NW¼ sec. 30 | Feb. 25, 1943
Mar. 28, 1940
Feb. 26, 1943
do
Apr. 20, 1942 | 22
46
46
100 | | 63 | | 1590
1591
1592
1593
1594 | dodo. C. E. Ferrin irrigation well Spring at terrace scarp George Layton domestic welldo | do | Apr. 19, 1943
Apr. 14, 1944
Dec. 1, 1940
Mar. 28, 1940
Feb. 25, 1943 | 36
36 | 2 | 67 | | 1595
1596
1597
1598
1599 | Joe Alder irrigation welldodoJack Norton irrigation welldo | SE¼NE¼ sec. 32
dodo
SE¼SW¼ sec. 33 | July 15, 1941
Apr. 13, 1943
June 18, 1943
May 20, 1943
Mar. 16, 1944 | 70
70
70 | 1, 460 | 70
69
66 | | 1600
1601
1602 | Lou Norton and Bill Shurtz irrigation well. do | SE¼NW¼ sec. 33 | June 19, 1940
July 16, 1941
Apr. 12, 1943 | 51
51
51 | ī, 100 | 67
66
66 | | 1603
1604 | Mrs. D. Craig well | do
NE¼SE¼ sec. 33 | Mar. 16, 1944
Feb. 25, 1943
Apr. 12, 1943 | 51
28
90 | | 66 | | 1606 | Ben Whitmer irrigation well. J. M. Smith irrigation well, USGS 377. | NE¼NE¼ sec. 33
NW¼SW¼ sec. 34 | July 10, 1940 | | 662 | | | 1607
1608
1609 | Smithville Canal Co. well, USGS 378. USGS 379 | SW¼NE¼ sec. 34
SE¼NE¼ sec. 34
dodo. | Apr. 12, 1943
June 19, 1940
Apr. 12, 1943 | 56
82
82 | 1, 100 | 65
65
66 | | 1610
1611 | | | June 19, 1940
Apr. 12, 1943 | | 1,072
940 | 66
65 | | 1612
1613
1614 | USGS 380
USGS 380
USGS 380
USGS 380
USGS 380
Ralph Layton well | do
SE¼NW¼ sec. 34 | July 9, 1943
Mar. 17, 1944
Feb. 25, 1943 | | | | | 1615
1616
1617
1618
1619 | Driven observation well, 1-89 | SELNEL sec 34 | Aug. 19, 1943
Aug. 23, 1943
Aug. 19, 1943
Aug. 10, 1948
Aug 18, 1943 | | 2
3
2
6
9 | 69
68
66
65 | | 1620
1621
1622
1623
1624 | Pratt Tenny domestic well | SW1/SW1/4 sec. 35
SW1/NE1/4 sec. 35
SE1/1 NE1/4 sec. 35
dodo | Mar. 28, 1940
Sept. 11, 1941
Aug. 14, 1943
Aug. 18, 1943 | 21 | 30
2
6
. 5 | 65
69
66
69 | | | | | | ĮΑ | naiyse | es in pa | rrrs be | er mili | 11011] | | | | | | |--|--------------------|---------------------|----------------------------------|------------------------------------|----------------------------|---------------------------------------|-------------------------|----------------------------|---------------------------|--------------------------------|-----------------------------|----------------------------|--------------------|--------------------------------------| | Specific conduct-
ance (K×10° at
25° C.) | Calcium (Ca) | Magnesium
(Mg) | Sodium and po-
tassium (Na+K) | Bicarbonate
(HCO3) | Sulfate (SO4) | Chloride (Cl) | Fluoride (F) | Nitrate (NO ₃) | Borate (BO ₃) | Parts per
million | Tons per acre-foot | Total hardness
as CaCOs | Percent sodium | Analysis No. | | 387
257
305
315
372 | | | | | | 790
475
555
725 | | | | | | | | 1570
1571
1572
1573
1574 | | 302
314
423
237
250 | 119 | 53 | 784 | 688
500
520 | 413
140 | 560
615
850
440
445 | | 35
 | | 2, 590 | 3. 52 | 515
285 | 77 | 1575
1576
1577
1578
1579 | | 342
319
237
268
300 | 30 | 65
28 | 595
472 | 684
616
518 | 253
184
180 | 680
650
350
470
590 | 4.3
-3.9
-1.9 | 19
36 | 2.0 | 2, 027
1, 390 | 2. 76
1. 89 | 501
190
255 | 72
84 | 1580
1581
1582
1583
1584 | | 324
250
258
286
256 | 54

9.0 | 42

16 | 579

611 | 572
507
592
566
558 | 258
110
 | 580
465
435
480
460 | 1.2 | 13
20
54 | 5. 0

4. 5 | 1, 808

1, 668 | 2. 46

2. 27 | 308
135
88
315 | 94 | 1585
1586
1587
1588
1589 | | 238
204
1, 870
300
309 | 61
64
122 | 35
26
84
 | 428
363
4, 640 | 574
536
1, 810
750
658 | 164
142
1, 774
60 | 400
315
5, 250
510
560 | .8
1.1
1.1
1.0 | 25
26
24 | 2.5
.2
 | 1,397
1,200
12,760 | 1.90
1.63
17.4 | 296
266
650
93 | 76
75
94 | 1590
1591
1592
1593
1594 | | 366
902
505
263
262 | 16
94

57 | 18
116

45 | 798
1,890

474 | 690
670

568 | 196
1,072

198 | 760
2, 230
1, 040
495
470 | 1.5
.8

1.3 | 4, 0
10

25 | 3.0 | 2, 133
5, 740

1, 550 | 2, 90
7, 81

2, 11 | 114
712

328 | 94
85

76 | 1595
1596
1597
1598
1599 | | 250
262
296
254 | 74
83 | 44
 | 452
 | 578
556
566
570 | 260
197
 | 445
470
550
465 | .9 | 28
 | 2.0 | 1, 540
1, 570 | 2. 09
2. 14 | 270
366
404 | 73
70 | 1600
1601
1602
1603 | | 195
268
236 | | | | 390
592
550 | 179 | 364
465
415 | | | | | | 390 | | 1604
1605
1606 | | 293
260
260 | 178 | 56
 | 387 | 550
527
536 | 238 | 560
475
465 | 1.5 | 30 | 1.0 | 1, 721 | 2. 34 | 840
 | 54
 | 1607
1608
1609 | | 233
240
238
229
120 | 113
73 | 36
29 | 357
165 |
561
558
540
520 | 180

169
66 | 420
405
405
400
114 | 1. 7
1. 2 | 25
1.0 | .5 | 1, 370
705 | 1.86 | 420

430
301 | 64
54 | 1610
1611
1612
1613
1614 | | 246
249
240
252
234 | | | | 484 | | 460
720
425
440
410 | | | | | | | | 1615
1616
1617
1618
1619 | | 220
228
249
232
224 | 109 | 33 | 355 | 220
464
514 | 190
182 | 475
422
465
405
430 | 1.5
1.2 | 42
14 | | 1,345 | 1.83 | 405
408 | 65 | 1620
1621
1622
1623
1624 | | Analysis No. | Source | Location | Date sampled | Depth of well (feet) | Yield (gallons
per minnte) | Temperature
(°F.) | |--------------------------------------|---|---|---|----------------------|-------------------------------|----------------------------| | 1625
1626
1627
1628
1629 | Driven observation well—Con. 1-6 | NEWNEW sec. 35
SEWNEW sec. 35
SWWNEW sec. 35
NEWNEW sec. 35
do | Aug. 19, 1943
Aug. 18, 1943
do
July 15, 1943
July 13, 1943 | | 8
1
12
15 | 66
69
64
65
66 | | 1630
1631
1632
1633
1634 | 1-11 | SW1/NE1/4 sec. 35
NW1/NE1/4 sec. 35
do | July 15, 1943 July 13, 1943 July 15, 1943 July 15, 1943 | | 1
10 | 64
64
67
65
67 | | 1635
1636
1637
1638
1639 | 1-16 | NW4NE4 sec. 35 do NW4NE4 sec. 35 se | Aug. 9, 1943
 | | 8
8
10
2 | 64
69
66
66
71 | | 1640
1641
1642
1643
1644 | 1-22
1-23
1-24
1-25
1-26 | NE¼NW¼ sec. 35do
dododo | July 15, 1943
July 14, 1943
do
July 15, 1943
July 14, 1943 | | 10 | 64
67
65
65
68 | | 1645
1646
1647
1648
1649 | 1-28
1-29
1-30
1-51
1-58 | NW¼NW¼ sec. 35dododododoNE¼SE¼ sec. 35 | July 13, 1943
Aug. 9, 1943 | | 1
12 | 67
67
67
66
66 | | 1650
1651
1652
1653
1654 | 1-59.
1-60.
1-61.
1-62.
1-79. | do | Aug. 23, 1943
Aug. 17, 1943
Aug. 10, 1943
Aug. 17, 1943
Aug. 23, 1943 | | 8
12
8
.5 | 66
66
68 | | 1655
1656
1657
1658
1659 | 1-82
1-83
1-84
1-86
1-87 | SW4SE4 sec. 35
NW4SE4 sec. 35
SW4NW4 sec. 35
SW4SW4 sec. 35
dodo | Aug. 6, 1943
 | | 2
10
9
9 | 67
65
66
65
65 | | 1660
1661
1662
1663 | 1-88-
1-1
Drain on right bank of Gila River-
Chambers irrigation well- | NW4SW4 sec. 35
SW4NW4 sec. 36
NW4SE4 sec. 36
T. 7 S. R. 25 E.:
SW4SE4 sec. 1
NE4NE4 sec. 2 | Aug. 23, 1943
Sept. 11, 1941
June 15, 1944 | | 1
4
50 | 66 | | 1664
1665
1666
1667 | Driven observation well, 1-80
1-81 | NE¼NE¼ sec. 2
do
NE¼SE¼ sec. 2
do | Aug. 10, 1943
Aug. 9, 1943
Aug. 8, 1940
Mar. 17, 1944 | 92
92 | 2
11
 | 66
65
62 | | 1668
1669
1670
1671 | Frank Tyler irrigation welldododoJim Young irrigation well | SE¼NE¼ sec. 2dodo
SE¼NW¼ sec. 2 | June 19, 1940
June 18, 1943
Mar. 18, 1944 | | | 66
66
66 | | 1672
1673
1674
1675 | do | do
do
NW¼SW¼ sec. 2 | June 19, 1940
July 15, 1941
Apr. 29, 1943
Mar. 17, 1944
Feb. 25, 1943 | | 1, 500 | 66
66 | | 1676
1677 | 506. Roy Layton irrigation well, USGS 550-A. Driven observation well, USGS | NE½NE½ sec. 3 | Mar. 31, 1944
Aug. 13, 1940 | 24 | | 66 | | 1011 | 508. | 14 12/214 12/2 200. 0 | Aug. 10, 1940 | | | " | | Specific conductance (KX10 at 25 °C.) | Calcium (Ca) | Magnesium
(Mg) | Sodium and po-
tassium (Na+R) | Bicarbonate
(HCO3) | Sulfate (SO4) | Chloride (Cl) | Fluoride (F) | Nitrate (NO3) | Borate (BO ₃) | Disso
soli | | Total hardness
as CaCO ₃ | Percent sodium | Analysis No. | |---------------------------------------|----------------|-------------------|----------------------------------|-----------------------|----------------|--------------------------|--------------|----------------|---------------------------|----------------------|-----------------------|--|----------------|--------------------------------------| | gΜ. | ď | ا کاه | 80 | وم | 8 | 0 | o | 1 6 | 18 | # - | Tons per
acre-foot | 1 EQ | S S | [og | | 3 C | 1 = | HC | 88 | - H | يو. | ä | 3 | 23 | o o | 2,5 | ಇತ್ತ | l äö | l ti | 1 22 | | 5 55 | - 5 | | 2.2 | 8 | <u>.</u> | D | 5 | <u>g</u> | l ta | E C | 2 2 | 28.2 | 8 | 1 🛱 | | ಕ್ಷಜನ | <u> </u> | - T | po sg | | 3 | 耳 | 1 2 | ## | 5 | 25 13 | 2 2 | # S | e e | ΙÃ | | 00 | 0 | ≥3 | ್ಷ ಕ್ಷಾ | m | ďΩ | 0 | j±, | 2 | Р | Parts per
million | Hæ | F | Д. | 4 | | | | | | | | | | | | | | | | | | | | | | Ì | Į | ļ | ļ | | | l | ļ | 1 | | | | 246 | | | | | - - | 460 | | | | | | | | 1625 | | 239 | | | | | | 445. | | | | | | | | 1626
1627 | | 232 | | | | | | | | | - | | | | | 1627 | | 239
232
216
235 | | | | | | 375 | | - - | - - | | | | | 1628
1629 | | 230 | | | | | | | | | | | | | | | | 259 | | | 1 | | | İ | | | 1 | | l | | | 1630
1631
1632
1633
1634 | | 259
230 | | | | | | 400 | | | | | | | | 1631 | | 227 | | | | | | 400
430 | | | | | | | | 1632 | | 227
275 | 168 | 43 | 387 | 480 | 243 | 555 | | 10 | | 1,642 | 2.23 | 596 | 58 | 1633 | | 242 | | | | | | | | | | | | | | 1634 | | | | | | | ļ | | l | i | | | | ļ | | 1 | | 251
221
240
217
303 | | | | | | 450 | | | | | | | | 1635
1636 | | 221 | | | | | | 400 | | | | | | | | 1636 | | 240 | | | | 536 | | 420 | | | | - | - | | | 1057 | | 303 | | | | | | 600 | | | | | | | | 1637
1638
1639 | | | | | | | - - | 000 | | | | | | 1 | | 1000 | | 270
202
243
232
185 | | | | | l | | 1 | | | | l | | | 1640 | | 202 | 76 | 18 | 357 | 472 | 149 | 350 | | 5.3 | | 1, 188 | 1.62 | 264 | 75 | 1641 | | 243 | | | | | | 430 | | | | | | | | 1642 | | 232 | | | | | | | | | | | | | | 1643 | | 185 | | | | | | 335 | | | | | | | | 1644 | | 940 | | | ł | l | l | | | ł | l | | 1 | | | 1645 | | 240
228
236 | 82 | 23 | 390 | 450 | 178 | 410 | | 17 | | 1, 322 | 1.80 | 299 | 74 | 1646 | | 236 | 02 | 20 | 350 | 200 | 110 | *10 | | 1.1 | | 1, 322 | 1.00 | 298 | 12 | 1647 | | 218 | | | | | | 410 | | | | | | | | 1648 | | 218
235 | | | | | | 410 | | | | | | | | 1649 | | | | | | | | 1 | | | | | | | | , | | 220 | | | | | | 400 | | | | | | | | 1650
1651
1652 | | 267
256 | | | | | | 500 | | | | | | | | 1651 | | 206 | | | | | | 465 | |] | | | | | | 1652
1653 | | 265
262 | | | | | | 500
465
530
510 | | | | | | | | 1654 | | 202 | | | | | | 910 | | | | | | | | 1002 | | 222 | | | | l | | 380 | l | [| | | | | | 1655 | | 251 | | | | | | 380
455 | | | | | | | | 1656 | | 251
250
245 | | | | | | 435 | | | | | | | | 1657
1658 | | 245 | | | | | - - | 435
425
525 | | | | | | | | 1658 | | 281 | | | | | | 525 | | | | | | | | 1659 | | OFF | | | | | | 4 | ł | | | | | l | | 1000 | | 255
221 | | | | | | 455 | | | | | | | | 1661 | | 263 | 187 | 51 | 331 | 429 | 221 | 415
570 | 1.6 | 8. 9 | | 1, 582 | 2. 15 | 676 | 52 | 1660
1661
1662 | | 200 | 101 | 01 | 557 | 720 | 221 | 370 | 1.0 | 0. 8 | | 1,002 | 2.10 | 0.0 | 02 | | | 258 | 152 | 48 | 350 | 518 | 214 | 475 | 1.1 | 19 | 3.0 | 1, 510 | 2.05 | 577 | 57 | 1663
1664 | | 229 | | | | | | 405
380 | | | | | | | | 1664 | | 224
212 | | | | | | 380 | | | - | | | | | 1665 | | 212 | | | | 508 | 110 | 365 | | | | | | 375 | | 1666 | | 010 | 104 | ••• | 010 | 400 | | | ١ | | | | | 4-0 | - 00 | 100 | | 218 | 124 | 39 | 319 | 496 | 167 | 395 | 1.1 | 29 | .1 | 1, 320 | 1.80 | 470 | 60 | 1667 | | 191 | 1 | | | 285 | 220 | 200 | l | ł | | | 1 | 985 | | 1668 | | 218 | 127 | 40 | 290 | 498 | 320
162 | 380 | | | | 1 244 | 1. 69 | 482 | 57 | 1669 | | 218
222 | 132 | 44 | 299 | 508 | l 163 | 390
380
390 | 1.3 | 27 | .2 | 1, 244
1, 310 | 1.78 | 285
482
510 | 56 | 1670 | | 214
223 | | | | 503 | 220
166 | 375 | | | l | | | 345 | | 1671
1672 | | 223 | 105 | 38 | 340 | 506 | 166 | 390 | .5 | 22 | | 1,311 | 1. 78 | 418 | 64 | 1672 | | 000 | | | | | | 1 | [| | | ' |
| l | | | | 203
243 | | | | | | 415
450
150 | | -== | - - | | | | == | 1673 | | 243 | 176 | 42 | 308 | 506 | 192 | 450 | . 7 | 38 | .2 | 1,460 | 1.99 | 612 | 52 | 1674 | | 104 | | | | 282 | | 150 | | | | | | | | 1675 | | 104 | | | | ı | ı | i | 1 | ı | ı | | | 1 . | | ۔۔۔ ا | | | 179 | 42 | 949 | 270 | 107 | AOF | , 2 | 1.40 | 1 1 | 1 210 | 1 72 | A01 | AR | | | 104
223 | 178 | 43 | 242 | 378 | 197 | 425 | .3 | 40 | .1 | 1, 310 | 1. 78 | 621 | 46 | 1676 | | | 178 | 43 | 242 | 378 | 197 | 425
385 | .3 | 40 | .1 | 1, 310 | 1.78 | 621 | 46 | 1676 | | Analysis No. | Source | Location | Date sampled | Depth of well (feet) | Yield (gallons
per minute) | Temperature
(°F.) | |----------------------|---|--|---|----------------------|-------------------------------|----------------------| | 1678
1679
1680 | Driven observation well, USGS 508-
Eldon Palmer irrigation well
Ted Furgerson domestic well,
USGS 510. | NE4NE4 sec. 3
SE4SW4 sec. 3
NW4NW4 sec. 3 | Nov. 19, 1943
June 19, 1940
Mar. 28, 1940 | 24

22 | 529 | 66
67
64 | | 1681
1682 | Roy Layton irrigation well, USGS 516. | SE¼SE¼ sec. 3 | Feb. 25, 1943
May 19, 1943 | 22
90 | | 66 | | 1683 | Eldon Palmer and S. L. Claridge irrigation well. | SW¼NW¼ sec. 3 | Feb. 25, 1943 | | | | | 1684 | J. M. Smith irrigation well, USGS 512. | NW¼NE¼ sec. 4 | July 21, 1941 | | | 65 | | 1685
1686 | Ted Furgerson irrigation well,
USGS 513. | do
SW¼NE¼ sec. 4 | May 1, 1943
July 23, 1940 | 80 | 530
500 | 66
66 | | 1687 | Merlyn Layton irrigation well | SE¼NW¼ sec. 4 | Mar. 24, 1944 | 81 | | | | 1688
1689
1690 | Chris Allred domestic well | SW¼NE¼ sec. 10
NE¼SE¼ sec. 11
SW¼NW¼ sec. 11
NE¼NW¼ sec. 12 | Feb. 26, 1942
Aug. 9, 1940
Apr. 22, 1943 | 58
85 | 237 | 68
66
66 | | 1691
1692 | Dr. L. Hoopes irrigation well | NE4NW4 Sec. 12
do | June 19, 1940
Apr. 14, 1944 | | | | | 1693
1694 | Ivan Pace irrigation well | SW¼SW¼ sec. 12
SE¼SE¼ sec. 12 | May 21, 1940
July 8, 1940 | 96
96 | | 67 | | 1695
1696 | Dick Layton irrigation well | SE¼SE¼ Sec. 12
do | Aug. 1, 1940
Mar. 30, 1944
July 19, 1940 | 100
100 | | 62 | | 1697 | Chas. Johns irrigation well | | • ' | | | 00 | | 1698
1699 | Ive Allred irrigation well, USGS 541. USGS 547 | SE¼NE¼ sec. 12 | Mar. 17, 1944
June 1, 1943 | | | 66 | | 1700
1701 | Marion Lee irrigation well.
Carl Morris irrigation well, USGS | SW¼NW¼ sec. 12
SW¼SW¼ sec. 12
NE¼SE¼ sec. 13 | Apr. 21, 1944
July 17, 1940 | | | | | 1702 | J. M. Wilson flowing well | SW14SW14 sec. 25 | Aug. 1, 1940 | | 1 | | | 1703
1704 | Southeast spring at base of butte_ | do | Nov. 14, 1940
Aug. 12, 1940 | | 2
10 | | | 1705
1706 | Northwest spring at base of butte-
Spring near Frye Creek | G0
NW4/SW1/4 sec. 26
SW1/4 sec. 26
SE1/4/NE1/4 sec. 28
T. 8 S., R. 25 E.:
NE1/4/NE1/4 sec. 12
SE1/4/NE1/4 sec. 12
SE1/4/NW1/4 sec. 12 | Mar. 11, 1941 | | 10
6 | 78 | | 1707 | Amos Cook flowing well, USGS 725
USGS 726 | NE¼NE¼ sec. 12 | May 3, 1940 | 1,050 | 50
30 | 98
94 | | 1708
1709 | Carl Morris irrigation well, USGS 728. | SE¼NE¼ sec. 12
SE¼NW¼ sec. 12 | Apr. 6, 1944 | 200 | | 76 | | 1710
1711 | W. A. Watts flowing well
Crum flowing well | NW14SE14 sec. 12
SE14SE14 sec. 1
T. 4 S., R. 24 E.:
NW14NW14 sec. 27
T. 5 S., R. 24 E.:
SE14SW14 sec. 6 | Sept. 15, 1940
May 3, 1940 | 700 | 1
120 | 96 | | 1712 | Teague Spring | NW14NW14 sec. 27 | Dec. 17, 1941 | | 15 | 74 | | 1713
1714 | Seep on right bank of Gila River
Driven observation well, 16-2 | SE¼SW¼ sec. 6 | Sept. 12, 1941
Sept. 9, 1943 | | 3
2
5 | 84 | | 1715 | 16-3 | d0 | do | | 5 | 75 | | 1716
1717 | 16-4
16-5 | SW14SW14 sec, 6
NW14SW14 sec. 6 | do | | 4
6 | 69
79 | | 1718
1719 | 16-5
16-5 | do | Nov. 2, 1943
Jan. 6, 1944 | | 5
5
4 | 80
79 | | 1720 | 16-5 | do | May 3, 1944 | | 4 | 78 | | 1721
1722 | 16-5 | | July 10, 1944
Aug. 29, 1944 | | 2
6 | 78
78 | | 1723 | | do | " ' | | 3 | 78 | | 1724
1725 | 16-5 | SW1/SW1// sec. 6 | Oct. 27, 1944
Sept. 11, 1943 | | 2
4 | 69
68 | | 1726 | 16-8 | do
NW¼SW¼ sec. 6 | Mar. 25, 1943 | 19. 4
19. 4 | . 5 | 69 | | 1727 | 16-8 | ldo | Sept. 22, 1943 | 19.4 | , 0 | ו שט ו | | | | | | | | | | | , | | | | | | |--|--------------|----------------------|----------------------------------|-----------------------|---------------|--------------------------------------|--------------|----------------|--------------|----------------------|-----------------------|--|----------------|--------------| | Specific conductance (KX10° at 25° C.) | Oalcium (Ca) | в | Sodium and po-
tassium (Na+K) | Bicarbonate
(HCO3) | Sulfate (SO4) | Chloride (Cl) | (F) | Nitrate (NO3) | Borate (BOs) | Disse
sol | | Total hardness
as CaCO ₃ | Percent sodium | Analysis No. | | SH. | n (| ig G | 8 4 | ga l | S. | 9 |) e | 6 | <u>e</u> | | Tons per
acre-foot | a Sa | os : | S | | £ 800 | ig | Mg | | E.F. | 율 | 문 | Fluoride | 1 <u>8</u> | 율 | Parts per
million | ညြီ | d S | ent | AS | | 8 B S | alc | age, | SSi | 10 | 4 | 율 | 8 | ₫ | 01.0 | HH. | # £ | ag ag | ್ಟ | l E | | ρ <u>σ</u> | Ö | Magnesium
(Mg) | S S | М | ß | ַ | 臣 | Z | m m | PE | Ę a | Ĥ | Ã | ₹ | | 209 | 162 | 52 | 228 | 548 | 158 | 345 | 1.5 | 13 | 6.0 | 1, 230 | 1. 67 | 618 | 45 | 167
167 | | 225
270 | | | | 248 | 160 | 470 | | 17 | | | | 435
398 | | 167
168 | | 2/0 | | | | 552 | 60 | 510 | 1.0 | 17 | | | | 998 | | 100 | | 209 | | | | 506 | | 338 | | | | | | | | 168 | | 206 | | | | | | 380 | | | | | | | | 168 | | 254 | 187 | 65 | 260 | 494 | 225 | 455 | .3 | 23 | 1.6 | 1, 459 | 1.98 | 734 | 44 | 168 | | 255 | 82 | 60 | 304 | 265 | 194 | 470 | 4.3 | 24 | | 1, 269 | 1.73 | 451 | 59 | 168 | | 236 | | | | | | 450 | ł | | | | | | | 168 | | 310 | | | | 574 | 320 | 615 | | | | | | 360 | | 168 | | 250 | 50 | 55 | 450 | 518 | 176 | 500 | 1.5 | 16 | .2 | 1,500 | 2.04 | 351 | 74 | 168 | | 376 | | | | | | 713 | | | | | | | | 168 | | 270
256 | 116 | 85 | 288 | 498
150 | 280
296 | 500
570 | 1 | 36 | 3.0 | 1, 468 | 2.00 | 525
639 | 49 | 168
166 | | 224 | | | 200 | 528
472 | 140 | 415 | | l | <u>:</u> | | | 510 | l | 169 | | 221 | 140 | 45 | 281 | 472 | 158 | 410 | .8 | 18 | .2 | 1, 290 | 1.75 | 534 | 53 | 169 | | 280
237 | | | | 505 | 500 | 540 | | | | | | 660 | | 169 | | 237
216 | | | | 528
484 | 220
180 | 395
380 | 1. 2 | 22 | | | | 556
480 | | 169
169 | | 226 | 173 | 43 | 278 | 468 | 192 | 430 | .7 | 26 | .1 | 1,370 | 1.86 | 608 | 50 | 169 | | 231 | | | | 498 | 150 | 400 | | - - | | | | 480 | | 169 | | 228 | 166 | 39 | 285 | 490 | 163 | 420 | .7 | 37 | .1 | 1, 350 | 1.84 | 575 | 52 | 169 | | 256 | | | | | | 530. | | | | | | 360 | 71 | 169
170 | | 257
350 | 72 | 44 | 412 | 180
518 | 314
450 | 540
700 | 1.0 | 23 | 3. 5 | 1, 490 | 2.03 | 705 | 71 | 170 | | 105 | 14 | 3.9 | | 156 | 127 | 166 | | | | | | | | 170 | | | | | | 1 | | l | | | | | | | | | | 107
203 | 10
28 | 8.7
5.9 | 208
397 | 166
195 | 122
275 | 172
360 | 2.6 | | | 605
1, 161 | .82
1.58 | 61
91 | 88
90 | 170 | | 157 | 26 | 8. 7
5. 2
3. 1 | 305 | 52 | 271 | 295 | | | | 926 | 1.26 | 78 | 90 | 17
17 | | 157 | 11 | .8 | 7 339 | 96 | 204 | 330 | 4. 1 | | | 937 | 1. 27 | 31 | 96 | 170 | | 410
250 | | | | 36
49 | 700
560 | 955 | 7. 9
7. 6 | | | | | 233
68
29 | | 17 | | 88.8 | 7. 0 | 2.8 | 184 | 96 | 111 | 525
152 | 8.0 | . 2 | 2.0 | 512 | . 70 | 29 | 93 | 17 | | 120 | 11 | 4.8 | 270 | 143 | 156 | 218 | 18 | | | 749 | 1.02 | 47 | 93 | 17 | | 340 | | | | 45 | 300 | 755 | 9.0 | | | | | 96 | | 17. | | 47.7 | 42 | 17 | 45 | 281 | 19 | 15 | .6 | | | 277 | .38 | 175 | 36 | 17 | | 1, 271
736 | 381
167 | 91
33 | 2, 496
1, 470 | 411
131 | 1, 147
802 | 3, 690
1, 980 | 6. 2
4. 7 | 2.0 | 18 | 8, 010
4, 520 | 10. 9
6. 15 | 1, 325
552 | 80
85 | 17.
17. | | 736
1,030 | | | | | | 2,700 | | | | | | | | 17 | | 897
747 | | | | 182 | 736 | 2, 350
1, 990 | | | | | | | | 17 | | 615 | 108 | 26 | 1, 270 | 334 | 621 | 1,540 | 5.8 | 48 | 30 | 3, 780 | 5. 14 | 376 | 86 | 17 | | 733
794 | 186 | 32 | 1,550 | 211 | 821 | 1.930 | 4. 5 | | 8.3 | 4, 780 | 6. 50 | 596 | 85 | 17
17 | | 763 | 100 | 34 | 1,000 | 411 | 041 | 2, 080
2, 020 | 4. 0 | 3.5 | | 1,700 | 0. 50 | 980 | 00 | 17: | | 744 | | | | | | 1, 980 | | | | | | | | 17 | | 744 | | | | | | 1,990 | | | | | | | | 17 | | 1, 010
851 | | | | | | 2, 650
2, 230
2, 170
2, 120 | | | | | | | | 17
17 | | 831 | 533 | 142 | 1, 202 | 534 | 987 | 2, 170 | | 1.0 | | 5, 300 | 7. 21 | 1, 914 | 58 | 17 | | 814 | | | | 1 | · | 2, 120 | I | ١ | l | | ı | I | 1 | 17 | | Analysis No. | Source | Location . | Date sampled | Depth of well (feet) | Yield (gallons
per minute) | Temperature (°F.) | |--------------------------------------|--|--|---|----------------------|-------------------------------|----------------------------| | 1728
1729
1730
1731 | Driven observation well—Con. 16-10 | SW4SW4 sec. 6
do
SE4NE4 sec. 7
SW4SE4 sec. 7 | Mar. 25, 1943
Sept. 11, 1943
Dec. 17, 1941
Aug. 7, 1943 | 18. 2
18. 2 | 10
8 | 67 | | 1732 | 15-2 | αυ | Sept. 13, 1943 | | 3 |
68 | | 1733
1734
1735
1736
1737 | 15-3 | NW¼SE¼ sec. 7
SW¼SE¼ sec. 7
SE¼SW¼ sec. 7
dodo | do
do
Sept. 7, 1943 | | 2
3
8
8 | 69
68
66
64
68 | | 1738
1739
1740
1741
1742 | 15-9
15-11.
15-12.
15-13.
15-14. | NW4SW4 sec. 7dodoNE4SW4 sec. 7 | Aug. 7, 1943
Sept. 30, 1943
Sept. 14, 1943
Aug. 7, 1943
Sept. 13, 1943 | | 8
8
5
6 | 70
67
65
66
68 | | 1743
1744
1745
1746
1747 | 15-15 | NW1/SE1/sec. 7
SW1/NE1/sec. 7
SW1/SW1/sec. 7
SE1/SW1/sec. 7
NE1/SW1/sec. 7 | do
Sept. 28, 1943
Sept. 14, 1943
do | | 1
1
8
6
4 | 72
74
61
64
67 | | 1748
1749
1750
1751
1752 | 15-20 | do
do
SW¼NE¼ sec. 7
SW¼SW¼ sec. 7
do | Sept. 13, 1943
do
Oct. 6, 1943
Sept. 14, 1943 | | 1
8
1
8 | 69
66
77
62
63 | | 1753
1754
1755
1756
1757 | 15-26.
15-27.
15-28.
15-29.
15-30. | do
NW4SW4 sec. 7
NE4SW4 sec. 7
SE4NW4 sec. 7
SW4NW4 sec. 7 | Aug. 7, 1943
do
Sept. 29, 1943
Sept. 11, 1943 | | 8
4
8
2 | 65
65
66
65
71 | | 1758
1759
1760
1761
1762 | 15-31
15-34
15-34
15-35
15-36 | SW¼NE¼ sec. 7
NW¼SW¼ sec. 7
dododo | do
Mar. 24, 1943
Sept. 13, 1943
do
Mar. 24, 1943 | 23. 8
23. 8 | 10
8
4
10 | 78

71
68
 | | 1763
1764
1765
1766
1767 | 15-36.
15-37.
15-38.
15-39.
15-40. | dodo | Sept. 13, 1943
do
Sept. 11, 1943
do | 18. 4 | 8
4
4
8
5 | 62
66
70
70
77 | | 1768
1769
1770
1771
1772 | 15-41 | NW\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | Mar. 24, 1943
Sept. 14, 1943
Sept. 13, 1943
Sept. 27, 1943
Sept. 28, 1943 | 19
19 | 4
5
. 25
8
8 | 64
73
66
66 | | 1773
1774
1775
1776
1777 | 15-44.
15-45.
15-46.
15-47. | NE¼NW¼ sec. 7
do
SW¼NW¼ sec. 7
do | Sept. 11, 1943
do
do
Mar. 24, 1943
Sept. 13, 1943 | 18.1
18.1 | 8
4
6
8
8 | 70
70
76
 | | 1778
1779
1780
1781
1782 | 15-48.
15-48.
15.49.
16-50.
15-50. | do
do
NW¼NW¼ sec. 7
do | Mar. 24, 1943
Sept. 13, 1943
Sept. 28, 1943
Sept. 11, 1943
Oct. 30, 1943 | 18. 6
18. 6 | 6
8
8
5 | 67
64
68
67 | | 1783
1784
1785
1786
1787 | 15–50.
15–50.
15–50.
15–50.
15–50. | do
do
do | Jan. 6,1944
Mar. 1,1944
May 3,1944
July 10,1944
Aug. 29,1944 | | 5
6
4
2
5 | 65
63
61
63
64 | | Specific conductance ance (K×10° at 26° C.) | Calcium (Ca) | Magnesium
(Mg) | Sodium and po-
tassium (Na+K) | Bicarbonate (HCO3) | Sulfate (SO4) | Chloride (Cl) | Fluoride (F) | Nitrate (NO3) | Borate (BO ₃) | Parts per
million
ilon
ossi | Tons per acre-foot | Total hardness
as CaCO ₃ | Percent sodium | Analysis No. | |---|--------------|-------------------|----------------------------------|--------------------|---------------|--|--------------|---------------|---------------------------|--------------------------------------|--------------------|--|----------------|--------------------------------------| | 002 | 0 | ~ | ω #3 | P | ι σο | 0 | 14 | 12 | <u> </u> | 4 | F 3 | Ţ | 1 4 | ₹ | | 733
625
2, 640
734
786 | 949
322 | 548
116 | 4, 800
1, 212 | 574
114
508 | 2, 810
840 | 1, 890
1, 550
8, 540
1, 850
1, 970 | | 20 | | 17, 700
4, 610 | 24, 1
6, 27 | 4, 620
1, 280 | 69
67 | 1728
1729
1730
1731
1732 | | 1 | | | | | | | | | | | | | | | | 859
726
552
740
773 | | | | 548 | | 2, 130
1, 860
1, 290
1, 820
1, 980 | | | | | | | | 1733
1734
1735
1736
1737 | | 891 | | | | | | 2, 190 | l | | | | | | | 1738 | | 891
281 | | | | | | 575
1, 330 | | | | | | | | 1738
1739 | | 576
701 | | | | | | 1, 330 | | | | | | | | 1740 | | 701 | | | | | | 1, 725 | | | | | | | | 1741
1742 | | 808 | | | | | | 2,000 | | | | | | | | 1742 | | 970
1,060 | 451
 | 194 | 1, 613 | 430 | 1, 644 | 2, 375
2, 750
440 | | 14 | 10 | 6, 500 | 8.84 | 1, 923
 | 65
 | 1743
1744
1745 | | 222
248 | | | | | | 485 | | | | | | | | 1745
1746 | | 595 | | | | | | 1, 410 | | | | | | | | 1747 | | 725 | | | | | | | | | | | | | | 1748
1749
1750 | | 815 | | | | | | 1, 840
2, 040
2, 720
420 | | | | | | | | 1749 | | 1,080
215 | 616 | 236 | 1, 704 | 332 | 2,016 | 2,720 | | 8.6 | - - | 7, 460 | 10. 1 | 2, 510 | 60 | 1750
1751 | | 204 | | | | | | 390 | | | | | | | | 1752 | | 201 | | | | | | | | | | | | | | 1102 | | 269 | | | | 410 | | 535 | | | | | l | | | 1753 | | 578
693 | | | | | | 1,375 | | | | | | | | 1753
1754 | | 693 | | | | | | 1, 730 | | | | | | | | 1755 | | 851
991 | 518 | 206 | 1 500 | 332 | | 535
1, 375
1, 730
2, 150
2, 475 | | 11 | | | 9. 08 | 2, 140 | | 1756
1757 | | 991 | 019 | 200 | 1, 578 | 332 | 1, 723 | 2,475 | 2.1 | 11 | 20 | 6, 680 | 9.08 | 2, 140 | 62 | 1757 | | 1,080 | | | | | | 2, 780 | | | | | | | | 1758 | | 96. 7
226 | | | | 219 | | 146 | | | | | | | | 1759 | | 226 | | | | | | 440 | | | | | | | | 1759
1760
1761
1762 | | 300
494 | 190 | 80 | 819 | 540 | 499 | 635 | | 1.0 | | | 4.08 | 803 | 69 | 1761 | | 494 | 190 | 80 | 919 | 040 | 499 | 1,150 | | 1.0 | | 3,000 | 4.08 | 808 | 09 | 1702 | | 545
509 | - | | | | | 1, 300
1, 190 | | | | | | | | 1763
1764 | | 1 020 | | | | | | 1,190 | | | | | | | | 1765 | | 1, 150
1, 220 | | | | | | 2, 920 | | | | | | | | 1766 | | 1, 220 | 746 | 259 | 1,880 | 377 | 2, 114 | 2, 600
2, 920
3, 190 | 2. 2 | | | 8, 380 | 11.4 | 2, 930 | 59 | 1767 | | 200 | | | | 340 | 1 | 400 | 1 | l | 1 | | 1 | | | 1769 | | 208
236 | | | | 340 | | 400
490 | | | | | | | | 1768
1769 | | 263
283
521 | | | | | | 555 | | | | | | | | 1770
1771
1772 | | 283 | | | | | ļ | 585
1, 240 | | | | | | | | 1771 | | 521 | | - - | | | | 1, 240 | | | | | | | | 1772 | | 1, 190 | | i | | l | | 3,040 | ł | | | | ŀ | | i | 1773 | | 1, 330 | | | | | | 3, 510 | | | | | | | | 1774 | | 938 | | | | | | 3, 510
2, 400 | | | ļ | | | | | 1773
1774
1775 | | 242 | 100 | 29 | 388 | 376 | 221 | 475 | | 5.0 | | 1,403 | 1.91 | 368 | 70 | 1776
1777 | | 265 | | | | | | 525 | | | | | | | | 1777 | | 271 | | | | 394 | | 535 | | | | | | | | 1778 | | 250 | | | | | | 500
3, 040 | | | | | | | | 1779 | | 1, 190 | | | | | | 3,040 | | | | | | | | 1780 | | 1, 290
1, 370 | 768 | 312 | 2, 290 | 583 | 2, 410 | 3, 390
3, 680 | 2.6 | 2. 5 | 25 | 9, 750 | 13. 3 | 3, 200 | 61 | 1781
1782 | | 1,010 | 100 | 912 | 2, 290 | 000 | 2, 410 | 3,000 | ∠. 0 | 2.0 | 40 | 9, 100 | 10. 3 | 0, 200 | 01 | 1104 | | 1,410 | | | | | | 3, 730 | | | | | | | | 1783 | | 1,350 | | | | | | 3, 730
3, 530 | | | | | | | | 1784
1785 | | 1,270 | | | | | | 3, 260 | | | | | | | | 1785 | | 1,350
1,270
1,310
1,380 | | | | | | 3, 260
3, 360
3, 610 | | | | | | | | 1786
1787 | | 1,000 | ' | ' | · | | ' | 3, 010 | ' | ' | ' - | ' | ' | ' | ' - | 1 1191 | | Analysis No. | Source | Location | Date sampled | Depth of well (feet) | Yield (gallons
per minute) | Temperature (°F.) | |--------------------------------------|--|--|---|---|-------------------------------|----------------------------| | 1788
1789
1790
1791
1792 | Driven observation well—Con.
15-50 | NW14NW14 sec. 7
NE14NW14 sec. 7
SW14NW14 sec. 7
do
NW14NW14 sec. 7 | Oct. 27, 1944
Sept. 22, 1943
Mar. 24, 1943
Sept. 22, 1943
Mar. 24, 1943 | 24
24
24
18.4 | 6
8
.5
8
18 | 66
67
64 | | 1793
1794
1795
1796
1797 | 15-53.
15-54.
15-54.
15-54.
15-54. | do
do
do | Sept. 13, 1943
Mar. 24, 1943
Sept. 27, 1943
Oct. 30, 1943
Jan. 5, 1944 | 18.4
18.2
18.2
18.2
18.2 | 8
15
8
3
6 | 65
75
74
68 | | 1798
1799
1800
1801
1802 | 15-54 | do
dododo | Mar. 2,1944
May 3,1944
July 11,1944
Aug. 29,1944
Oct. 30,1944 | 18. 2
18. 2
18. 2
18. 2
18. 2 | 8
3
4
5
2 | 66
66
67
74
71 | | 1803
1804
1805
1806
1807 | 15–55.
15–57.
15–58.
Sampled by balling.
Sampled by balling. | | Sept. 11, 1943
Sept. 13, 1943
Sept. 9, 1943
Mar. 15, 1944 | | .5
8
8 | 70
67
66
64
64 | | 1808
1809
1810 | Sampled by pumping
Spring at Indian Hot Springs,
USGS 183.
USGS 184 | DE-40E-4 Sec. 8 | | | .5
4.5 | 64
77 | | 1811
1812 | USGS 184-A
USGS 185 | NE¼NE¼ sec. 17 | t | | <u>1</u> | 81
71 | | 1813
1814
1815 | "Beauty Spring" at Indian Hot Springsdo | SE¼NE¼ sec. 17 | Apr. 20, 1942 | | | 119
 | | 1816
1817 | do | do | Apr. 20, 1942
June 15, 1943
Jan. 5, 1944
June 14, 1944 | | | 118 | | 1818
1819
1820 | Mud Spring at Indian Hot Springs.
do | dododo | Oct. 30, 1940
Apr. 20, 1942
Jan. 5, 1944 | | 5 | 104
106 | | 1821
1822
1823 | do
Main Spring at Indian Hot Springs.
Youth Spring at Indian Hot | | June 14, 1944
Oct. 30, 1940 | | 200 | 109
118
118 | | 1824
1825 | Springs,
do
do | do | Apr. 20, 1942
June 15, 1943 | | 150
150 | 118
116 | | 1826
1827 | do | do | Jan. 4, 1944
June 14, 1944 | | | 112 | | 1828
1829
1830 | Magnesia Spring at Indian Hot
Springs.
Drain flowing into Gila
River
V. McEuen stock well | NE4SE4 sec. 18
SE4NE4 sec. 18 | Oct. 30, 1940
Sept. 12, 1941
Mar. 27, 1940
Feb. 27, 1943 | 22 | 10 | 72
68 | | 1831
1832 | Driven observation well, 14-1 | SE¼SE¼ sec. 18 | Sept. 15, 1943 | 22 | 8 | 68 | | 1833
1834
1835
1836 | 14-2
14-2
14-3
14-4 | do | Aug. 30, 1943
Sept. 15, 1943
do | | 8
8
6 | 64
63
67
67 | | 1837
1838 | 14-6 | NE½SE½ sec. 18 | Mar. 18, 1943
Sept. 15, 1943 | 18.8 | 9 | 69 | | 1839 | 14-7 | do | Nov. 2, 1943
Jan. 4, 1944
Feb. 10, 1944 | | 2 2 | 68
67 | between the mouth of Bonita Creek near Solomonsville and the Southern Pacific Railat Calva—Continued [Analyses in parts per million] | Specific conductance (K×10° at 25°C.) | Ca) | Ħ | Sodium and potassium (Na+K) | Bicarbonate
(HCO3) | (70 | (C1) | (F) | (03) | 03) | Disse
sol | olved
ids | Total hardness
as CaCOs | Percent sodium | . Zo. | |---------------------------------------|--------------|-------------------|-----------------------------|-----------------------|---------------|----------------------------|--------------|----------------------------|--------------|----------------------|-----------------------|----------------------------|----------------|----------------------| | C.S. |) | nesiu
Mg) | 8 8 | HC | te (S | ide | ide (| te () | 9 9 | per | per | Cac | int sc | ysis] | | Speci
25° | Calcium (Ca) | Magnesium
(Mg) | Sodiu | 3ics | Sulfate (SO4) | Chloride (Cl) | Fluoride | Nitrate (NO ₃) | Borate (BOs) | Parts per
million | Tons per
acre-foot | rotal
as | Perce | Analysis No. | | | | | 02.45 | | | | <u> </u> | | | | - | - | | - | | 1,550
1,140 | | | |
 - | - | 4, 270
2, 920 | ļ | | | | | | | 1788
1789 | | 304 | | | ****** | 438 | | 630 | | | | | | | | 1790 | | 245
276 | | | | 432 | | 460
550 | | | | | | | | 1790
1791
1792 | | 272
364 | 174 | 57 | 546 | 392 | 388 | 555
800 | | 1.0 | | 2, 159 | 2. 94 | 668 | 64 | 1793
1794 | | 204
292 | l | | 554 | 416 | 285 | 800
370
620 | 2.3 | 5 | 8. 0 | L | 2. 41 | 314 | 79 | 1795
1796 | | 422 | 80
173 | 28
57 | 711 | 454 | 454 | 965 | 1.8 | 2.0 | 10 | 1, 770
2, 590 | 3. 52 | 666 | 70 | 1797 | | 395
375
479 | | | | | | 890
805
1,120 | | | | | | | | 1798
1799 | | 479
362
218 | 127 | 41 | 628 | 472 | 371 | 1, 120
760 | 1.8 | 1.0 | 4.0 | 1, 480 | 2.01 | 486 | 74 | 1800
1801 | | 1 | 54 | 19 | 403 | 424 | 157 | 410 | | .5 | | 1, 250 | 1.70 | 213 | 80 | 1802 | | 1, 140
300 | | | | | | 3, 140
580 | | | | | | | | 1803
1804 | | 742
637 | 260 | 93 | 1,090 | 123 | 798 | 1,850
1,750 | | 2.0 | | 4, 050 | 5. 51 | 1,030 | 70 | 1805
1806 | | 628 | 232 | 91 | 1,110 | 122 | 785 | 1, 740 | | 1.0 | | 4,020 | 5.47 | 953 | 72 | 1807 | | 609
573 | 319 | 102 | 997 | 484
113 | 793
435 | 1, 530
1, 560 | | 3.0 | | 3, 980 | 5. 41 | 1, 220
315 | 64 | 1808
1809 | | 646
524 | | | | 119
108 | 490
396 | 1,820 | | | | | | 315
240 | | 1810
1811 | | 567 | | | | 109 | 426 | 1, 430
1, 550 | | | | | | 248 | | 1812 | | 445 | 80 | 14 | 875 | 103 | 360 | 1, 200 | 3. 2 | | | 2, 580 | 3. 51 | 257 | 88 | 1813 | | 451
441 | | | | 104 | 354 | 1, 210
1, 190
1, 200 | | | | | | 195 | | 1814
1815
1816 | | 441
440
440 | 77
78 | 12
9.6 | 879
879 | 104
105 | 351
348 | 1, 200
1, 195 | 3.5
3.9 | 2.0
.5 | 8. 0
2. 0 | 2, 580
2, 570 | 3. 51
3. 50 | 242
234 | 89
89 | 1816
1817 | | ļ | 83 | 11 | 1,027 | 106 | 395 | 1, 400 | 4.8 | | .8 | 2,970 | 4.04 | 252 | 90 | 1818 | | 521
521
552 | | | | 107 | 396 | 1,400
1,510 | | | | | | 225 | | 1819 | | 519
508 | 81 | 14 | 1,023 | 101 | 402 | 1, 440
1, 400 | 3.4 | | | 2,970 | 4.04 | 260 | 90 | 1820
1821
1822 | | 515 | 80 | 12 | 1,026 | 100 | 393 | 1,400 | 4.6 | | .8 | 2, 960 | 4.03 | 249 | 90 | 1823 | | 513 | | | | 103 | 387 | 1,400
1,385 | | | | | | 225 | | 1824
1825 | | 504
512
506 | 78 | 12 | 1, 050 | 106 | 404 | 1, 385
1, 420
1, 400 | 3, 8 | 2.0 | 9.0 | 3,020 | 4. 11 | 244 | 90 | 1826
1827 | | 538 | 88 | 14 | 1, 103 | 116 | 437 | 1,500 | 3.4 | | | 3, 200 | 4. 35 | 277 | 90 | 1828 | | 312 | 84 | 45 | 526 | 226 | 316 | 720 | 1 | 2, 5 | | 1 807 | 2.46 | 395 | 74 | 1829 | | 610
864 | 262
361 | 132
184 | . 1, 014
1, 392 | 474
414 | 866
1, 241 | 1,475
2,150 | 2. 2
1. 7 | 32
25 | 3, 5 | 3, 480
5, 560 | 4.73
7.56 | 1, 196
1, 658 | 65
65 | 1830
1831 | | 483 | | | | | | 1,090 | | | | | | | | 1832 | | 508
546 | 155 | 65 | 917 | 676 | 536 | 1,080
1,220 | | 16 | | 3, 100 | 4. 22 | 654 | 75 | 1833
1834 | | 603
308 | | | | | | 1, 370
655 | | | | | | | | 1835
1836 | | 166 | 78 | 22 | 242 | 308 | 142 | 290 | | 2.0 | | 928 | 1.26 | 285 | 65 | 1837 | | 596
582 | 238 | 118 | 968 | 550 | 760 | 1,360 | 1.6 | 58 | | 3, 750 | 5. 10 | 1,080 | 66 | 1838
1839 | | 586
599 | | | | 572 | | 1,340
1,350
1,340 | | | 5. 3 | | | | | 1840
1841 | | 587 | | | | | | 1,340
1,350 | | | | | | | | 1842 | | | | | | | | | | | | | | | | | Chemical character of ground waters in the Gila River Basin, Graham County, Ariz., road bridge | Analysis No. | Source | Location | Date sampled | Depth of well (feet) | Yield (gallons
per minute) | Temperature (°F.) | |--------------------------------------|---|--|--|--------------------------------------|-------------------------------|----------------------| | 1843
1844
1845
1846
1847 | Driven observation well—Con. 14-8 | SW¼SE¼ sec. 18dododoNW¼SE¼ sec. 18 | Mar. 18, 1943
Sept. 15, 1943
Mar. 22, 1943
Sept. 15, 1943
Mar. 22, 1943 | 18.7
18.7
23.8
23.8
18.6 | 9
8
9
8
15 | 64
65 | | 1848 | 14-10 | do | Sept. 15, 1943
Sept. 14, 1943 | 18.6 | 8 | 64
69 | | 1849
1850
1851
1852 | 14-11
14-12
14-12
14-13 | dodosw¼SE¼ sec, 18dododo | Mar. 18, 1943
Sept. 15, 1943
Mar. 18, 1943 | 18. 1
18. 1
23. 8 | 18
8
6 | 65 | | 1853 | 14–13 | _ | Sept 15 1043 | 23.8 | 8 | 64 | | 1854
1855 | 14–14 | NW¼SE¼ sec. 18
do
SE¼SW¼ sec. 18 | Mar. 22, 1943
Sept. 14, 1943 | 18. 4
18. 4 | 8 | 63 | | 1856
1857 | 14-14 | SE¼SW¼ sec. 18
do | Mar. 22, 1943
Sept. 14, 1943
Aug. 31, 1943
Mar. 18, 1943 | 18.3 | $^{8}_{12}$ | 63 | | 1858
1859
1860
1861
1862 | 14-16 | do
NW¼SE¼ sec. 18
do
do
do | Sept. 15, 1943
Mar. 22, 1943
Sept. 15, 1943
Mar. 22, 1943
Sept. 14, 1943 | 18.3
18.7
18.7
23.8
23.8 | 8
12
8
3
3 | 66
64
62 | | 1863
1864
1865
1866
1867 | 14-19 | do | Aug. 31, 1943
Sept. 15, 1943
Mar. 22, 1943
Sept. 14, 1943 | 18. 6
18. 6 | 3
8
1
15
8 | 73
62
67
62 | | 1868
1869
1870
1871
1872 | 14-23
14-24
14-24
14-25
14-25 | NW¼SE¼ sec. 18
NE¼SW¼ sec. 18
dododo | Oct. 1,1943
Mar. 17,1943
Sept. 15,1943
Mar. 22,1943
Sept. 14,1943 | 18. 5
18. 5
18. 4
18. 4 | 8
10
8
18
8 | 75
 | | 1873
1874
1875
1876
1877 | 14-26 | do | Mar. 23, 1943
Sept. 14, 1943
Aug. 31, 1943
Sept. 30, 1943 | 23. 9
23. 9 | 15
8
8
8 | 61
67
66
66 | | 1878
1879
1880
1881
1882 | 14-30 | do
NW¼NE¼ sec. 18
do
do
NW¼SW¼ sec. 18 | Sept. 14, 1943
do
Sept. 30, 1943
Mar. 22, 1943 | 18.8 | 5
8
8
8 | 67
66
68
66 | | 1883
1884
1885
1886
1887 | 14-34
14-35
14-35
14-36
14-36 | do
NE¼SW¼ sec. 18
do
SE¼NW¼ sec. 18
do | Sept. 14, 1943
Mar. 22, 1943
Sept. 14, 1943
Mar. 23, 1943
Sept. 14, 1943 | 18.8
18.7
18.7
17.4
17.4 | 4
12
8
5
6 | 64
 | | 1888
1889
1890
1891
1892 | 14-37 | do
NE¼NW¼ sec. 18
NW¼NE¼ sec. 18
SW¼SW¼ sec. 18
do | do
do
do
Mar. 23, 1943
Sept. 14, 1943 | 23. 3
23. 8 | 1
8
8
5
8 | 68
67
67
64 | | 1893
1894
1895
1896
1897 | 14-42
14-42
14-43
14-43
14-44 | do
doSW¼NW¼ sec. 18
doSE¼NW¼ sec. 18 | Mar. 22, 1943
Sept. 14, 1943
Mar. 22, 1943
Sept. 14, 1943
Mar. 23, 1943 | 18.8
18.6
18.6
18.6
18.7 | 12
4
7
4
18 | 66
62 | | 1898
1899
1900
1901
1902 | 14-44' | do
NE¼NW¼ sec. 18do
do
SW¼NW¼ sec. 18 | Sept. 14, 1943
Aug. 31, 1943
Sept. 13, 1943 | 18.7 | 8
1
3
6 | 61
72
67
66 | between the mouth of Bonita Creek near Solomonsville and the Southern Pacific Railat Calva—Continued [Analyses in parts per million] | | | | | | | 8 in p | | | | | | | | | |--|--------------|-------------------|---|-----------------------|---------------|--------------------------------|--|----------------|--|----------------------|-----------------------|--|----------------|--------------------------------------| | Specific conduct-
ance (KX10 ⁸ at
25° C.) | Calcium (Ca) |

 E | Sodium and potassium (Na+K) | Bicarbonate
(HCO3) | Sulfate (SO4) | Obloride (CI) | £ | Nitrate (NO2) | Borate (BO ₃) | Diss
sol | olved
ids | Total hardness
as CaCO3 | Percent sodium | ړو. | | 983° | 8 | Magnesium
(Mg) | 8.0 | EG. | S | de (| Fluoride (F) | (e | e | n d | o e | a Co | t sc | Analysis No. | | See Sign | cin | eg ⊠ | 1 2 2 | [E E | fate | ori | oric | rate | ate | Parts per
million | Tons per
acre-foot | S C | Gen | lys | | Sg 252 | Cal | Ma | Sod | Bi | Sul
 Chl | Flu | Zi. | Bor | Pag II | Por | Tot | Per | ₽u | | | | ļ <u></u> | | | | | | - | | ļ | - | | | - | | 364 | 216 | 59 | 512 | 460 | 360 | 810 | | 2.0 | | 2, 186 | 2.97 | 782 | 59 | 1845 | | 364
364
179
324
318 | | | | 304 | ļ | 810
334 | | | | | | | | 1844
1844
1844 | | 324 | | | | l | | 680
690 | | | | | | | | 1846 | | 1 | | | | 404 | | 690 | | | | | | | · | 184 | | 496
447
569 | | | | 245 | 1 | 1, 175
1, 055 | | | | | . | | | 1848
1849
1850
1851
1852 | | 569 | 362 | 99 | 809 | 245
638 | 626 | 1, 055
1, 340 | 1.4 | 2.0 | 2. 5 | 3, 550 | 4.83 | 1,310 | 57 | 1850 | | 610
395 | 246 | 67 | 531 | 480 | 371 | 1,500
895 | | 2,0 | | 2,348 | 3. 19 | 890 | 56 | 1852 | | 394
213
272
544
612 | - | | | | - | 900 | | | | | . | | | | | 213 | 131 | 49 | 391 | 346
370 | 267 | 415
565 | | 1.0 | | 1,586 | 2, 16 | 528 | 62 | 1853
1854
1855 | | 544 | | | | 632 | | 1, 250
1, 470 | | | | | . | . | | 1856
1857 | | | | | | 1 | | ľ | | | | | | | | | | 524
384
364
268 | | | | 538
484 | | 1, 510
875
830
545 | | | | | | | | 1858 | | 364 | 110 | 42 | 411 | 382 | 246 | 830 | | 3.0 | | -3-525 | 2. 10 | 447 | 67 | 1860 | | 315 | 110 | 42 | 411 | 382 | 240 | 685 | | 3.0 | | 1,545 | 2. 10 | 447 | | 1858
1859
1860
1861
1862 | | 229
542 | | | | | | 440 | | | | | | | | 1863
1864
1865
1866
1867 | | 542
656 | | | | | | 1,240 | | | | | | | | 1864 | | 656
332
335 | | | | 452 | | 1, 640
725
740 | | | | | | | | 1866 | | ı | | | | | | l | | | | | | | | | | 248
506 | | | | 618 | | 500
1 135 | | | | | | | | 1868 | | 518 | 268 | | | 330 | | 1, 135
1, 200
1, 820 | | | | | | | | 1870 | | 518
708
757 | 446 | 118
132 | 1, 153
1, 148 | 777 | 787
826 | 1,820 | 1. 0
1. 2 | 1.0
2.0 | 7.5 | 4, 310
4, 820 | 5.86
6.56 | 1, 154
1, 656 | 68
60 | 1868
1869
1870
1871
1872 | | 361
181
328
358
295 | | | | 484 | | 795 | | | | | | | | | | 181
328 | | | | 380 | | 330
720 | | | | | | | | 1874 | | 358 | | | | | | 330
720
795
640 | | | | | | | | 1873
1874
1875
1876
1877 | | | | | | | | i . | | | | | | | | | | 456
568
749
742
498 | | | | | | 1, 015
1, 300
1, 840 | | | | | | | | 1878
1879
1880
1881
1882 | | 749 | | | | | | 1,840 | | | | | | | | 1880 | | 498 | 266 | 74 | 767 | 628 | 523 | 1,830
1,115 | | 5. 0 | | 3, 060 | 4. 16 | 968 | 63 | 1882 | | 511
678
787
93. 7 | | | | 586 | | 1, 140 | | | | | | | | 1883
1884
1885
1886
1887 | | 787 | | | | 774 | | 1,600
1,960
132 | | | | | | | | 1884 | | 93.7
145 | | | | 219 | | 132
230 | | | | | | | | 1886
1887 | | | 134 | 40 | 331 | 100 | 240 | | 1.9 | i.0 | 7.5 | 1, 422 | 1.93 | 499 | 59 | | | 259
286
524
897
890 | | | | 545 | | 625
585
1, 200
2, 420 | | | | | | | | 1888
1889
1890
1891 | | 897 | 471 | 135 | 1, 423 | 584 | 885 | 1, 200
2, 420 | | 13 | | 5, 630 | 7. 66 | 1, 730 | 64 | 1890 | | | | | | | | 2, 390 | | | | | | | | 1892 | | 457
502 | | | | 612 | | 990
1, 120 | | | | | | | | 1893
1894 | | 538 | | | | 586 | | 1, 295 | | | | | | | | 1895 | | 502
538
597
185 | 76 | 26 | 286 | 346 | 149 | 1, 295
1, 500
340 | | 1.0 | | 1,048 | 1. 43 | 296 | 68 | 1895
1896
1897 | | | | | | 410
320 | | | | | | | | | | | | 213
223
314 | 66 | 29 | 378 | 320 | 213 | 440
670
1, 120
2, 020 | | . 5 | | 1, 284 | 1.75 | 284 | 74 | 1898
1899
1900 | | 485 | | | | 444 | | 1, 120 | | | | | | | | 1900
1901 | | 772 | | '' | ا ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ | 598 | | 2, 020 | ا ـــــا | | 'ا | | '' | ا | | 1902 | | Analysis No. | Source | Location | Date sampled | Depth of well (feet) | Yield (gallons
per minute) | Temperature (°F.) | |--|--|--|--|----------------------------------|-------------------------------|----------------------------| | 1903
1904
1905
1906
1907 | Driven observation well—Con,
14-48 | SW¼NW¼ sec. 18do
do
do
NE¼NW¼ sec. 18do | Aug. 31, 1943
Mar. 23, 1943
Sept. 14, 1943
Sept. 13, 1943 | 18. 7
13. 9
13. 9 | 4
7
8
8 | 62
64
68
66 | | 1908
1909
1910
1911
1912 | 14-52 | SW¼NW¼ sec. 18
do
NW¼NW¼ sec. 18
dodo | Mar. 23, 1943
Sept. 14, 1943
Sept. 30, 1943
Sept. 14, 1943
Mar. 23, 1943 | 18. 7
18. 7 | 4
4
8
8
2 | 64
64
66 | | 1913
1914
1915:
1916 ¹
1917 | 14–56.
14–57.
14–58.
14–60.
14–61. | do
do
do | Sept. 14, 1943
Sept. 30, 1943
Sept. 14, 1943
do
Aug. 31, 1943 | 24 | 4
8
8
4
8 | 64
65
66
71
65 | | 1918
1919
1920
1921
1922 | 14-62.
14-62.
USGS 195.
USGS 195.
13-15. | SE¼NW¼ sec. 18
do
SW¼NE¼ sec. 19
do
SE¼NE¼ sec. 19 | Mar. 23, 1943
Sept. 14, 1943
Aug. 14, 1940
Nov. 19, 1943
Sept. 15, 1943 | 13. 5
13. 5
34
34 | 15
8
2 | 69
70
64
68 | | 1923
1924
1925
1926
1927 | 13-16 | NE¼NE¼ sec. 19 do . | Oct. 1, 1943
do
Mar. 16, 1943
Sept. 16, 1943
Mar. 17, 1943 | 19
19
19 | 8
8
18
8
11 | 66
67
66 | | 1928
1929
1930
1931
1932 | 13-19 | do
do
NE¼SE¼ sec. 19
do | Sept. 16, 1943
Mar. 17, 1943
Sept. 16, 1943
Oct. 5, 1943
Sept. 15, 1943 | 19
18
18 | 8
1
3
8 | 62
66
69
67 | | 1933
1934
1935
1936
1937 | 13-23 | SE¼NE¼ sec. 19dodo
NE¼NE sec. 19do | do
do
do
Oct. 1,1943 | | 8
5
6
8 | 67
68
67
64
63 | | 1938
1939
1940
1941
1942 | 13-28 | do | Sept. 15, 1943
Mar. 16, 1943
Sept. 16, 1943
Mar. 17, 1943
Sept. 16, 1943 | 24
24
18
18 | 8
1
4
9
5 | 65
63
64 | | 1943
1944
1945
1946
1947 | 13-31 | do
do
SEMNEM sec. 19
SWMNEM sec. 19 | Sept. 15, 1943
Mar. 17, 1943
Sept. 15, 1943
do
Mar. 17, 1943 | 19
19
24 | 6
8
8
7 | 65
67
68 | | 1948
1949
1950
1951
1952 | 13-34 | do
do
dodo | Sept. 15, 1943
Oct. 30, 1943
Jan. 5, 1944
Mar. 2, 1944
May 3, 1944 | 24
24
24
24
24
24 | 6
3
5
8
5 | 65
65
64
64
63 | | 1953
1954
1955
1956
1957 | 13-34
13-34
13-34
13-35
13-36 | dododosE¼NE¼ sec. 19
SW¼NE¼ sec. 19 | July 11, 1944
Aug. 30, 1944
Oct. 30, 1944
Sept. 15, 1943
Mar. 17, 1943 | 24
24
24
24
24 | 5
4
8
2 | 64
64
66
65 | | 1958
1959
1960
1961
1962 | 13-36 | do
NE¼NE¼ sec. 19
do
NW¼NE¼ sec. 19
do | Oct. 12, 1943
Mar. 18, 1943
Sept. 15, 1943
Mar. 18, 1943
Sept. 15, 1943 | 24
19
19
19
19 | 6
15
8
18 | 67
 | between the mouth of Bonita Creek near Solomonsville and the Southern Pacific Railat Calva—Continued [Analyses in parts per million] | | | | | | | es in pa | - U.S. g- 1 | | | | | | | | |--|--------------|-------------------|------------------------|--------------------|---------------|--------------------------------|--------------|----------------------------|--------------|----------------------|-----------------------|----------------------------|----------------|------------------------------| | x10s at | Ca) | 8 | and po- | nate
Os) | (F) | (c) | F) | (03) | 03) | Diss
sol | olved
ids | Iness | dium | ۲٥. | | Specific conduct-
ance (K×10° at
25° C.) | Calcium (Ca) | Magnesium
(Mg) | Sodium a
tassium () | Bicarbonate (HCO3) | Sulfate (SO4) | Chloride (Cl) | Fluoride (F) | Nitrate (NO ₃) | Borate (BO3) | Parts per
million | Tons per
acre-foot | Total hardness
as CaCO3 | Percent sodium | Analysis No. | | 576 | | | | | | 1, 350 | | | | | | | | 1003 | | 261
315
196 | 95 | 33 | 428 | 406
322 | 228 | 515
675
390 | 1.9 | 1.0 | `3.0 | 1, 501 | 2.04 | 372 | 71 | 1903
1904
1905
1906 | | 262 | 87 | 31 | 435 | 301 | 256 | 550 | | 2.0 | | 1, 509 | 2.05 | 344 | 73 | 1907 | | 1, 051
892
190 | | | | 562 | | 2, 990
2, 460
370
425 | | | | | | | | 1908
1909
1910 | | 219
1,340 | 914 | 252 | 1, 854 | 538 | 1, 175 | 4, 030 | | | | 8, 490 | 11.5 | 3, 320 | 55 | 1911
1912 | | 656
281
244 | | | | | | 1, 650
615
510 | | | | | | | | 1913
1914
1915 | | 178
228 | | | | | | 335
460 | | | | | | | | 1916
1917 | | 169
252
1, 140 | 70
928 | 27
241 | 248
1,354 | 318
83 | 139
 | 296
510
3, 660 | | 1.0 | | 938
7, 200 | 1. 28
9. 79 | 286
3, 310 | 65
47 | 1918
1919
1920 | | 1, 340
359 | 1, 050 | 258 | 1, 720 | 254 | 1, 160 | 4, 260
735 | .4 | .0 | 10 | 8, 570 | 11.7 | 3, 680 | 50 | 1921
1922 | |
413
544
776 | 536 | 142 | 1,085 | 660 | 947 | 890
1, 230
1, 950 | 1.0 | 2.0 | 3.0 | 4, 990 | 6. 79 | 1,922 | 55 | 1923
1924
1925 | | 738
729 | | | | 822 | | 1,850
1,750 | | | | 4, 990 | 0.78 | | | 1926
1927 | | 671
637
639 | 462 | 122 | 822 | 574 | 767 | 1, 620
1, 540 | | 2. 0 | | 4,000 | 5. 44 | 1,654 | 52 | 1928
1929 | | 689
415 | | | | 556 | | 1,560
1,700
905 | | | | | | | | 1930
1931
1932 | | 383
343 | 202 | 67 | 565 | 537 | 390 | 820
730 | 1.8 | . 5 | 13 | 2, 311 | 3. 14 | 780 | 61 | 1933
1934 | | 367
341
636 | | | | | | 805
715
1,300 | | | | | | | | 1935
1936
1937 | | 369
531 | 334 | <u></u>
84 | 763 | 644 | 574 | 770
1, 210 | | 7.0 | | 3, 290 | 4. 47 | 1,179 | <u>58</u> | 1938
1939 | | 536
650
623 | | | | 682 | | 1, 240
1, 560
1, 500 | | | | | | | | 1940
1941
1942 | | 656
691 | 491 | 128 | 932 | 696 | 829 | 1,580
1,660
1,730 | 1. 0
1. 2 | 2.0 | 2.0 | 4,390
4,510 | 5. 97 | 1, 752
1, 731 | <u>54</u> | 1943
1944 | | 705
603
624 | 486 | 126
 | 989 | 688
 | 840
 | 1,730
1,460
1,460 | 1.2 | . 5 | 7. 5 | 4, 510 | 6. 13 | 1, 731 | 55 | 1945
1946
1947 | | 534
607 | 415 | 112 | 875 | 534
628 | 733 | 1, 250
1, 500
1, 710 | 1.7 | 1.0 | 12 | 3, 950 | 5. 37 | 1,500 | 56 | 1948
1949 | | 695
587
505 | 277 | 82 | 773 | 610 | 547 | 1, 710
1, 410
1, 160 | 1.4 | .5 | 3.0 | 3, 140 | 4. 27 | 1,030 | 62 | 1950
1951
1952 | | 491
504 | | | | | | 1, 110
1, 160 | | | | | | | | 1953
1954 | | 456
448
579 | | | | 572 | | 1,100
1,000
1,390 | | | | | | | | 1955
1956
1957 | | 549
407 | 276 | 70 | 521 | 504 | 388 | 915
780 | | 2. 0 | | 2, 420 | 3. 29 | 977 | 54 | 1958
1959 | | 356
575
5 6 7 | | | | 576 | | 780
1,370
1,360 | | | | | | | | 1960
1961
1962 | | | | | | - | | | |--------------------------------------|---|---|---|----------------------------|-------------------------------|----------------------------| | Analysis No. | Source | Location | Date sampled | Depth of well (feet) | Yield (gallons
per minute) | Temperature (°F.) | | 1963
1964
1965
1966
1967 | Driven observation well—Con,
13-39 | NE¼SE¼ sec. 19
do
NW¼NE¼ sec. 19
dodo | Mar. 17, 1943
Sept. 15, 1943
Mar. 18, 1943
Sept. 15, 1943 | 18
19
19
19 | 12
8
.5
8 | 65
66
69 | | 1968
1969
1970
1971
1972 | 13-42 | NE¼NW¼ sec. 19
do
NW¼NE¼ sec. 19
dodo | Mar. 18, 1943
Sept. 15, 1943
Mar. 18, 1943
Sept. 15, 1943
Mar. 18, 1943 | 19
19
19
19
18 | 9
8
12
8
8 | 65
64 | | 1973
1974
1975
1976
1977 | 13-44 | do | Sept. 15, 1943
 | 18 | 8
2
4
8
8 | 64
64
65
64
65 | | 1978
1979
1980
1981
1982 | 13-56 | do | Oct. 30, 1943
Jan. 5, 1944
Mar. 2, 1944
May 3, 1944
July 11, 1944 | | 8
5
8
4
4 | 66
66
65
65
66 | | 1983
1984
1985
1986
1987 | 13-55 | do
do
NE¼NW¼ sec. 20
do | Aug. 30, 1944
Oct. 30, 1944
Sept. 15, 1943
July 16, 1940
June 17, 1943 | 66 | 6
6
6 | 67
67
65
69 | | 1988
1989
1990
1991 | Paul Thatcher domestic welldo. Henry Haggard irrigation well, USGS 201. | do
SE¼SW¼ sec. 20
do
SE¼SE¼ sec. 20 | Apr. 19, 1944
Mar. 27, 1940
Feb. 27, 1943
July 18, 1940 | 66
21
21 | | 63
69 | | 1992 | do | do | Apr. 15, 1943 | | | 69 | | 1993
1994 | Toad Haggard irrigation well, USGS 201-A. A. D. Nelson domestic well | do | Feb. 27 1943 | 71
39 | | 66 | | 1995
1996
1997 | Driven observation well, 13-2
13-6
13-7 | SW¼SW¼ sec. 20
doSW¼NW¼ sec. 20
dodo | Feb. 27, 1943
Sept. 16, 1943
Oct. 1, 1943 | | 1
2
2 | 65
64
66 | | 1998
1999
2000
2001
2002 | 13-9
13-9
13-9
13-9
13-9 | NW¼NW¼ sec. 20dodododo | Aug. 30, 1943
Nov. 2, 1943
Jan. 6, 1944
Mar. 1, 1944
May 3, 1944 | | 8
5
3
5
8 | 66
67
63
66
67 | | 2003
2004
2005
2006
2007 | 13-9
13-9
13-9
13-10
13-10 | do | July 10, 1944
Aug. 29, 1944
Oct. 27, 1944
Mar. 16, 1943
Sept. 16, 1943 | 18
18 | 6
8
6
15
8 | 67
67
67
68 | | 2008
2009
2010
2011
2012 | 13-11
13-11
13-12
13-13
13-14 | do
do
NW¼SW¼ sec. 20
SW¼NW¼ sec. 20 | Mar. 17, 1943
Sept. 16, 1943
do
Sept. 15, 1943 | 19
19 | 12
8
8
8
6 | 65
62
65
68 | | 2013 | Well drilled by U. S. Grazing
Service. | NE¼ sec. 26 | May 3, 1944 | | | | | 2014
2015
2016
2017 | Eden Spring W. B. Marshall domestic well J. D. Colvin irrigation well | NE¼NW¼ sec. 27.
NW¼NW¼ sec. 28.
SE¼NE¼ sec. 29.
do | Feb. 13, 1941
Feb. 27, 1943
Mar. 27, 1940
Mar. 2, 1943 | 29
32
32 | 10 | 66 | between the mouth of Bonita Creek near Solomonsville and the Southern Pacific Railat Calva—Continued | Specific conduct.
ance (K×10 at
25° C.) | Calcium (Ca) | Magnesium
(Mg) | Sodium and po-
tassium (Na+K) | Bicarbonate
(HCO3) | Sulfate (SO4) | Chloride (CI) | Fluoride (F) | Nitrate (NO3) | Borate (BO ₃) | sol | Tons per spie | Total hardness
as CaCOs | Percent sodium | Analysis No. | |---|--------------|-------------------|----------------------------------|-----------------------|------------------|--------------------------------|-----------------|---------------|---------------------------|----------------------|---------------|----------------------------|----------------|--------------------------------------| | Spec
an | Calc | Mag | Sodi | Bic | Sulfa | СРІС | Fluo | Zi. | Bors | Parts per
million | Tons | Tota | Perc | Ana | | 543
506 | 284 | 97 | 830 | 700
533 | 596
586 | 1, 210
1, 160 | | 14 | | 3,380 | 4. 60 | 1, 108 | 62 | 1963
1964 | | 365
313
559 | 236 | 64 | 474 | 460 | 360 | 800
670
1,350 | | 2.0 | | 2, 163 | 2. 94 | 852 | 55 | 1965
1966
1967 | | 531
521
368 | 281 | 100 | 759 | 662
540
458 | 609 | 1, 205
1, 190
805
805 | 1.0 | 6.6 | 17 | 3, 210 | 4.37 | 1, 112 | 60 | 1968
1969
1970 | | 363
565 | 368 | 101 | 784 | 614 | 626 | 1,335 | | 2.0 | | 3,520 | 4.79 | 1,334 | 56 | 1971
1972 | | 590
538
730 | | | | 627 | | 1, 400
1, 220
1, 930 | | | | | | | | 1973
1974
1975 | | 614
1,400 | | | | | | 1, 530 | | | | | | | | 1976
1977 | | 1, 380
1, 390 | 1,000 | 256 | 2, 060 | 550 | 1, 620 | 4, 180
4, 050 | . 6 | 1.2 | 15 | 9, 390 | 12.8 | 3, 550 | 56 | 1978
1979 | | 1, 360
1, 380
1, 390 | | | | | | 3, 980
3, 990
4, 080 | | | | | | | | 1980
1981
1982 | | 1, 390
1, 380 | | | | | | 4,100 | | | | | | | | 1983 | | 1,380
1,310
410
485 | 827 | 231 | 1,907 | 252
522 | 1, 269
350 | 4, 080
3, 990
888
840 | .3 | 5.0 | 7. 5 | 8, 350 | 11.4 | 3, 014
690 | 58 | 1984
1985
1986
1987 | | 452 | 186 | 79 | 714 | 410 | 523 | 1,000
960 | 1.4 | 58 | 1.0 | 2, 760 | 3. 75 | 789 | 66 | 1988
1989 | | 420
387
700 | | | | 546
534
416 | 500
800 | 960
800
1,712 | .4 | 19 | | | | 630
1,770 | | 1989
1990
1991 | | 579 | | | | 480 | | 1, 295 | | | | | | | | 1992 | | 430 | 195 | 64 | 665 | 526 | 436 | 895 | 1.4 | 56 | 2, 5 | 2, 570 | 3.50 | 750 | 66 | 1993 | | 585
363
371 | | | | 836 | | 1, 270
795
760 | | | | | | | | 1994
1995
1996 | | 432 | | | | | | 960 | | | | | | | | 1997 | | 486
480
499
428 | 181 | 77 | 795 | 538 | 511 | 1, 055
1, 070
1, 100 | | 44 | | 2, 930 | 3.98 | 768 | 69
 | 1998
1999
2000 | | 428
415 | 134 | 53 | 730 | 550 | 465 | 865
840 | 1.8 | 20 | 2 | 2, 510 | 3. 41 | 552 | 74 | 2001
2002 | | 435
445 | | | | | | 920
945 | | | | | | | | 2003
2004
2005
2006
2007 | | 445
458
265 | | | - | 478 | | 1,020
485 | | | | | | | | 2005 | | 278
273 | 120 | 36 | 438 | 458 | 264 | 530
530 | | 2.0 | | 1, 616 | 2. 20 | 448 | 68 | | | 379
354
333
278 | | | | | | 830
720 | | | | | | | | 2008
2009
2010 | | 333
278 | 142 | 50
 | 543 | 597 | 323 | 645
5 75 | 1.9 | 1.0 | | 2,000 | 2.72 | 560 | 68 | 2011
2012 | | 135 | 3.3 | 3.8 | 344 | 862 | 33 | 15 | 3. 2 | .5 | 6.0 | 827 | 1.12 | 24 | 97 | 2013 | | 36, 9
469
450 | 33
228 | 16
85 | 27
670 | 161
514
223 | 40
505
600 | 975
1,005 | .9
1.4
.6 | 13
61 | 1.6 | 223
2, 780 | . 30
3. 78 | 148
918
412 | 28
61 | 2014
2015
2016 | | 307 | | | | 350 | | 600 | | | | | | | | 2017 | | Analysis No. | Source | Location | Date sampled | Depth of well (feet) | Yield (gallons
per minute) | Temperature (°F.) | |--------------------------------------|--
---|---|---|-------------------------------|----------------------------| | 2018
2019
2020
2021
2022 | Lamar Kempton irrigation welldodoDrain on right bank of Gila RiverDriven observation well, 11-60 | SE1/4SW1/4 sec. 29
do
NW1/4NW1/4 sec. 29
SE1/4SE1/4 sec. 29
SW1/4SW1/4 sec. 29 | May 2, 1940
Feb. 27, 1943
Sept. 12, 1941
Sept. 16, 1943 | 15
15 | 25
1
8 | 63

69
67 | | 2023
2024
2025
2026
2027 | 12-1 | do
do
do | Oct. 28, 1943
Jan. 4, 1944
Feb. 29, 1944
May 2, 1944
July 10, 1944 |
 | 2
2
2
.5 | 68
66
62
61
65 | | 2028
2029
2030
2031
2032 | 12-1
12-1
12-2
12-3
12-4 | do
do
do
NW¼SW¼ sec. 29 | Aug. 29, 1944
Oct. 27, 1944
Sept. 16, 1943
Oct. 2, 1943 | | . 25
. 25
8
8 | 70
68
67
75
66 | | 2033
2034
2035
2036
2037 | 12-5 | dodo | Sept. 16, 1943
 | | 5
2
.2
.2
.5 | 66
71
66
59
59 | | 2038
2039
2040
2041
2042 | 12-6 | do
SW1/NW1/sec. 29
NE4/SW1/sec. 29
dodo | May 3, 1944
Sept. 16, 1943
July 10, 1944
Aug. 29, 1944
Oct. 27, 1944 | | 6.5 | 62
68
67
68 | | 2043
2044
2045
2046
2047 | Driven observation well, 12-9
12-12 | SW14NW14 sec. 29
NW14NW14 sec. 29
do
SW14SW14 sec. 29
do | Sept. 16, 1943
dododododo | | 1
8
2
2 | 68
70
67
68
67 | | 2048
2049
2050
2051
2052 | 12-17.
12-18.
12-19.
12-20.
12-21. | NW¼SW¼ sec. 29
do
SW¼NW¼ sec. 29
do
NW¼NW¼ sec. 29 | do
do
do | | .5
8
8
2 | 72
65
65
65
65 | | 2053
2054
2055
2056
2057 | 12-23.
12-24.
12-25.
12-26.
12-27. | SW14SW14 sec. 29
do
NW14SW14 sec. 29
do
SW14NW14 sec. 29 | Oct. 2, 1943
Sept. 16, 1943
do
Mar. 16, 1943 | 18. 5 | 8
8
.5
8 | 65
65
70
65 | | 2058
2059
2060
2061
2062 | 12-27.
12-28.
12-29.
12-29.
12-39. | do
NW¼NW¼ sec. 29
do
NW¼SE¼ sec. 29 | Sept. 16, 1943
Oct. 5, 1943
Mar. 16, 1943
Sept. 16, 1943 | 18. 5
19
19 | 8
6
9
8 | 68
64
64
65 | | 2063
2064
2065
2066
2067 | 12-53 L. W. Farrington unused welldo Unused well, owner unknown J. S. Brown domestic well | NE¼SW¼ sec. 29
SW¼SE¼ sec. 30
do
NW¼NE¼ sec. 30
NE¼SE¼ sec. 30 | do
Feb. 27, 1942
Mar. 2, 1943
do
Mar. 11, 1943 | 34
34
40 | 8 | 68 | | 2068
2069
2070
2071
2072 | Driven observation well, 12-30do12-3112-32 | do
do
SE¼NE¼ sec. 30
do | Mar. 16, 1943
Sept. 16, 1943
Aug. 28, 1943
Mar. 16, 1943
Sept. 16, 1943 | 18. 3
18. 3
23. 9
23. 9 | 9
8
8
9
8 | 65
64
64 | | 2073
2074
2075
2076
2077 | 12-33 | NE¼NE¼ sec. 30
do. | Mar. 16, 1943
Sept. 16, 1943
Mar. 16, 1943
Sept. 16, 1943
Mar. 16, 1943 | 18. 7
18. 7
23. 7
23. 7
18. 6 | 3
8
12
8
12 | 62 | between the mouth of Bonita Creek near Solomonsville and the Southern Pacific Railat Calva—Continued 1,640 | Driven observation well—Con. | | | | | | | | |--|--------------|--|----------------------------------|---------------------------------|--------------|-------------------------------|-------------------| | 2978 12-36. NEMATEM Sec. 30. Sept. 16, 1943 13.6 8 67 | Analysis No. | Source | Location | Date sampled | of
eet) | Yield (gallons
per minute) | Temperature (°F.) | | 2978 12-36. NEMATEM Sec. 30. Sept. 16, 1943 13.6 8 67 | | Driven observation well—Con | | | | | | | 12-37 | 2078 | 12-35 | NE¼NE¼ sec. 30 | Sept. 16, 1943 | 18.6 | 8 | | | 2083 12-38 | 2080 | 12-37 | do | Mar. 16, 1943 | | 1.2 | | | 2083 12-38 | 2081
2082 | 12-37
12-38 | NE¼SE¼ sec. 30 | Mar. 16, 1943 | | 8 | 66 | | 2085 12-49 | - 1 | 12–38 | đo | Sept. 16, 1943 | 23. 9 | 8 | 65 | | 12-50 | 2084 | 12-48 | SE¼NE¼ sec. 30 | do | | 8 | 64 | | 12-50 | 2086 | | NE%NE% sec. 30
NW%NE% sec. 30 | do | | 6 | 64 | | 2089 12-50. | 2087 | | dó | Oct. 28, 1943 | | 10 | | | 2090 | | 12-50 | do | Jan. 5, 1944 | | | 66 | | 12-50 | 2089 | 19-50 | do | May 3.1944 | | 8 | | | 2003 12-50 | 2091 | 12-50 | do | Jnly 11, 1944 | | 8 | 65 | | 2095 12-55. NW4/NE1/s sec. 30. do do do do do do do d | | | | i i | | | | | 2095 12-55. NW4/NE1/s sec. 30. do do do do do do do d | | 12-50 | do | Oct. 30, 1944
Sept. 16, 1943 | | | | | 2097 12-56 | 2095 | 12-55 | NW¼SE¼ sec. 30 | do | | . 5 | 65 | | 12-56 | 2096
2097 | 12-56 | NW 14 N E 14 Sec. 30 | Oct. 28, 1943 | | 2 | | | 12-56 | 2008 | 12–56 | đo | Jan. 5, 1944 | | 3 | 66 | | 12-56 | 2099 | 12-56 | do | Mar. 2, 1944 | | 4 | 64 | | 12-56 | | 12-56 | do | July 11, 1944 | | 3 | 68 | | Eldon Palmer irrigation well, SE\sets\sec. 31 | | | do | Aug. 30, 1944 | | 5 | 68 | | USGS 209. do | | 12-56 | do | Oct. 30, 1944 | | 5 | | | 106 | 2104 | Eldon Palmer irrigation well,
USGS 209. | SE14SE14 sec. 31 | Aug. 7, 1941 | 76 | | - 1 | | Driven observation well, USGS NWMNE/4 sec. 31 | | do | do | May 1, 1943 | | | | | 2128 | 2106 | Driven observation well, USGS | NW1/NE1/2 sec. 31 | Mar. 17, 1944
May 28, 1940 | | | | | 113 | | 212. | ì | | | | | | 113 | 2108 | USGS 213 | NE¼NE¼ sec. 31 | do | 27 | | | | 113 | 2109
2110 | USGS 214 | do | Nov. 5, 1943 | | | 65 | | 113 | 2111 | 11-45 | do | Aug. 28, 1943 | | | | | 2117 | | | | | | | 1 | | 2117 | | 11-46 | do | Jan. 5, 1943 | | 8 | | | 2117 | 2115 | 11-46 | do | Mar. 2, 1944 | | 5 | | | 2118 | | 11-46 | do | July 11, 1944 | | 5 | | | 2119 | | 11–46 | do | Aug. 30, 1944 | | 8 | 66 | | 2123 USGS 217. | 2119 | 11-46 | do | Oct. 30, 1944 | | | 66 | | 2123 USGS 217. | 2120
2121 | USGS 216 | NW4NW4 Sec. 32 | Nov. 5.1943 | | | 64 | | USGS 218 | 2122 | USGS 217 | do | May 29, 1940 | | | | | Driven observation well. 1-6 SEL/SEL/4 sec. 32 Mar. 27, 1940 13.6 65 65 65 65 65 65 65 | 2123 | USGS 217 | do | | | | 67 | | 2128 Seepage in Gila River channel SE\(\frac{1}{2}\) SE\(\frac{1}{2}\) Seepage in Gila River channel NW\(\frac{1}{2}\) SE\(\frac{1}\) SE\(\frac{1}{2}\) SE\(| | | do | May 29, 1940
Nov. 5 1943 | 14 | | 65 | | 2128 Seepage in Gila
River channel SE\(\frac{1}{2}\) SE\(\frac{1}{2}\) Seepage in Gila River channel NW\(\frac{1}{2}\) SE\(\frac{1}\) SE\(\frac{1}{2}\) SE\(| 2126 | H. C. Kempton domestic well | NE¼NE¼ sec. 32 | Mar. 27, 1940 | | | | | 2128 Seepage in Gila River channel SEL/SEL/Sec. 32 do | 2127 | | 1 | | | | | | 2130 | 2128 | Seepage in Gila River channel | SEMSEM sec. 32 | Feb 2 1044 | | 10 | | | 2131 Driven observation well, 11-6 SE\(\frac{1}{2}\) SE\(\frac{1}\) SE\(\frac{1}{2}\) SE\(\frac{1}\) SE\(\frac{1}{2}\) SE\(\frac{1}{2}\) SE\(\frac{1}\) SE | 2130 | 40 | do | Feb. 7, 1944 | | 6 | | | | 2131
2132 | Driven observation well, 11-6 | SE¼SE¼ sec. 32
do | Mar. 12, 1943
Aug. 3. 1943 | 24.9
24.9 | | ₆₆ | | conduct- | (Cs) | u m | Sodium and potassium (Na+K) | 0 nate | 804) | (CI) | (F) | NO ₃) | BO ₃) | Disso
sol | ids | rdness
CO ₃ | Sodium | No. | |---------------------------------------|-------------------|-------------------|-----------------------------|--------------------|-------------------|----------------------------------|--------------|-------------------|-------------------|----------------------------|-------------------------|--|----------------|-------------------| | Specific conductance (KX10 at 25° C.) | Calcium (Ca) | Magnesium
(Mg) | Sodium
tassium | Bicarbonate (HCOs) | Sulfate (SO4) | Chloride (Cl) | Fluoride (F) | Nitrate (NO3) | Borate (BO3) | Parts per
million | Tons per
acre-foot | Total hardness
as CaCO ₃ | Percent sodium | Analysis No. | | 632
334 | | | |
 | | 1, 550 | | | | | | | | 207
207 | | 342
334
369 | | | | 500
530 | | 705
730
785 | | | | | | | | 208
308
208 | | 374
507
578 | 298 | 81 | 738 | 544
467 | 498 | 800
1, 210
1, 390 | 1.4 | 8. 5 | 7.5 | 3, 100 | 4. 22 | 1,076 | 60 | 208
208
208 | | 575
586 | 344 | 99 | 875 | 558 | 587 | 1, 480 | 1.4 | 9.8 | 6.0 | 3, 670 | 4. 99 | 1, 270 | 60 | 208
208 | | 587
592
647 | 392 | 110 | 932 | 568 | 654 | 1,500
1,490
1,630
1,860 | 1.3 | 11 | | 4,010 | 5. 45 | 1, 430 | 59 | 208
208
209 | | 718
7 58 | 474 | 137 | 1,090 | 528 | 762 | 1,860
2,030 | 1.1 | 21 | 9.0 | 4, 780 | 6. 50 | 1,750 | 57 | 209
209 | | 822
570
397 | | | | 493
394 | | 2, 220
1, 440
925 | | | | | | | | 209
209
209 | | 397
730
718 | 344 | 83 | 1, 213 | 472 | 833 | 925
1,830
1,850 | .8 | 1.0 | 17 | 4, 540 | 6. 17 | 1, 200 | 69 | 209
209
209 | | 707
691 | | | | | | 1,810
1,770
1,730 | | | | | | | | 209
209 | | 693
689
688 | | | | | | 1, 730
1, 730
1, 730 | | | | | | | | 210
210
210 | | 678
564 | 224 | 73 | 1, 144 | 609 | 652 | 1, 710
1, 520 | 2.1 | 23 | | 3, 940 | 5. 36 | 859 | 74 | 210
210 | | 608
619
530 | 177
196
216 | 61
64
60 | 1, 105
1, 150
854 | 546
620
540 | 613
618
534 | 1, 425
1, 470
1, 166 | 1.4 | 22 | | 3, 650
3, 830
3, 100 | 4. 96
5. 21
4. 22 | 692
752
786 | 78
77
70 | 210
210
210 | | 350 | 55 | 42 | 664 | 168 | 335 | 898 | | | | 2,077 | 2.82 | 310 | 82 | 210 | | 310
294
491 | 136
208 | 50
68 | 448
811 | 396
586 | 309
478 | 662
615
1,120 | 1.5 | 3. 0
5. 0 | 14 | 1, 760
2, 980 | 2.39
4.05 | 545
798 | 64
69 | 210
211
211 | | 405
363 | 176 | 50 |
585 | 518
524 | 359 | 900
785 | 1.8 | 3.0 | 7.5 | 2, 220 | 3.02 | 641 | 66 | 211 | | 355
355
339 | | | | | | 785
770
770
720 | | | | | | | | 211
211
211 | | 331 | | | | | | 685 | | | | | | | | 221 | | 309
286
370 | 148 | 40 | 481 | 498 | 284 | 615
565
748 | 1.9 | 3.5 | 5.0 | 1,820 | 2.48 | 534 | 66 | 211
221
212 | | 401
300 | | | | | | 850
658 | | | | | | | | 212
212 | | 318
360
311 | 204
154 | 53
48 | 507
481 | 518
454 | 374
349 | 630
720
625
555 | 1. 4
1. 7 | 7.5 | 18 | 2, 113
1, 890 | 2. 87
2. 57 | 727
582
330 | 60
64 | 212
212
212 | | 290
263 | 86 | 38 | 530 | 390
448 | 360
254 | 555
630 | 1.7 | 54
2.0 | | 1, 762 | 2.40 | 330
371 | 76 | 212
212 | | 176
351
360 | 91
172 | 26
49 | 262
572 | 362
523
526 | 158
342 | 312
770
780
605 | 1.5 | .6 | 4.0 | 1, 028
2, 160 | 1.40
2.94 | 334
630 | 63
66 | 212
212
213 | | 309
29 8 | | | | 554 | | 605
565 | | | | | | | | 213
213 | | | | • | | | | | |--------------------------------------|---|--|--|---|-------------------------------|----------------------------| | Analysis No. | Source | Location | Date sampled | Depth of well (feet) | Yield (gallons
per minute) | Temperature (°F.) | | 2133
2134
2135
2136
2137 | Driven observation well—Con. 11-7 | do | Sept. 17, 1943
Mar. 13, 1943
Aug. 30, 1943
Mar. 12, 1943
Aug. 31, 1943 | 17. 8
17. 8
17. 8
17. 8 | . 5
3
3
3
7 | 72
68
69 | | 2138
2139
2140
2141
2142 | 11-10 | NE4SE4 sec. 32
SE4SE4 sec. 32
do
NE4SE4 sec. 32
do | Oct. 2, 1943
Mar. 13, 1943
Aug. 30, 1943
Mar. 13, 1943
Aug. 31, 1943 | 23. 1
23. 1
15. 8
15. 8 | 8
5
1
2
10 | 70
69
67 | | 2143
2144
2145
2146
2147 | 11–14 | NW¼SE¼ sec. 32dododo | Aug. 27, 1943
Mar. 15, 1944
do
Mar. 13, 1943 | 16.5 | 8

5
3 | 64
64
64 | | 2148
2149
2150
2151
2152 | 11-15 | do
do
SW¼SE¼ sec. 32
do
do
NW¼SE¼ sec. 32 | Aug. 31, 1943
Aug. 26, 1943
Mar. 14, 1943
Aug. 30, 1943
Mar. 13, 1943 | 16. 5
14. 7
14. 7
17 | 6
8
12
12
10 | 67
 | | 2153
2154
2155
2156
2157 | 11-18 | do
do
do
do
SE½SW½ sec. 32 | Aug. 30, 1943
Mar. 13, 1943
Aug. 31, 1943
Sept. 17, 1943
Mar. 13, 1943 | 17
19
19
 | 10
2
6
8
5 | 66
66
68
 | | 2158
2159
2160
2161
2162 | 11-21 | do | Aug. 30, 1943
Aug. 31, 1943
 | 16.9 | 12
12
8
6
7 | 65
65
67
72 | | 2163
2164
2165
2166
2167 | 11-25 | do
NE¼SW¼ sec. 32
dodo
dodo | Aug. 31, 1943
Mar. 14, 1943
Aug. 30, 1943
Mar. 13, 1943
Aug. 31, 1943 | 17
19
19
20. 85
20. 85 | 8
5
10
8
13 | 65
64
65 | | 2168
2169
2170
2171
2172 | 11-28 | SE¼SW¼ sec. 32 | Sept. 17, 1943
Mar. 15, 1943
Sept. 17, 1943
Oct. 30, 1943
Jan. 5, 1944 | 24. 3
24. 3
24. 3
24. 3 | 1
6
3
2
2. | 70
63
64
63 | | 2173
2174
2175
2176
2177 | 11-29
11-29
11-29
11-29
11-29 | do
do
do | Mar. 2, 1944
May 2, 1944
July 11, 1944
Aug. 30, 1944
Oct. 30, 1944 | 23. 4
24. 3
24. 3
24. 3
24. 3 | 1
. 5
1.
. 75
. 5 | 62
62
64
66
66 | | 2178
2179
2180
2181
2182 | 11-30 | | Mar. 14, 1943
Aug. 31, 1943
Mar. 14, 1943
Aug. 30, 1943
Sept. 17, 1943 | 13
13
15
15 | 12
2
12
2 | 65
63
75 | | 2183
2184
2185
2186
2187 | 11-33 | SW14NW14 sec. 32
NW14SW14 sec. 32
SW14NW14 sec. 32
NW14NW14 sec. 32
dodo | do
do
do | | 1
1
2
1
.5 | 68
70
65
69
70 | | 2188
2189
2190
2191
2192 | 11-38 | do
do
NW148W14 sec. 32
SW148W14 sec. 32
do | Aug. 26, 1943
Sept. 17, 1943
do
Mar. 15, 1943
Sept. 17, 1943 | 24. 3
24. 3 | 8
1
8
. 75 | 70
64
66 | between the mouth of Bonita Creek near Solomonsville and the Southern Pacific Railat Calva—Continued [Analyses in parts per million] | 1 43 | | | - + | | | · - | 1 - | | ı — | Γ. | | | Ī | | |---|--------------|-------------------|----------------------------------|--------------------|-------------------|---------------------------------|--------------|---------------|--------------|-------------------------|-----------------------|----------------------------|----------------|------------------------------| | Specific conduct-
ance (KX10 at
25° C.) | (Ca) | a | Sodium and po-
tassium (Na+K) | Bicarbonate (HCOs) | (*0; | (CI) | (F) | Nitrate (NOs) | 303) | Disso
soli | ids | Total hardness
as CaCO3 | Percent sodium | No. | | ific
C.) | Calcium (Ca) | nesiu
(Ig) | | arb
(HC | Sulfate (SO4) | Chloride (Cl) | Fluoride (F) | ate (| Borate (BO3) | s per
lion | s per | l han | ents | Analysis No. | | Speci
and
25° | Calci | Magnesium
(Mg) | Sodin | Bic | Sulfa | Chlo | Fluo | Nitr | Bora | Parts per
million | Tons per
acre-foot | Tots | Perc | Ana | | 991 | | - | | | - | 725 | | | | | | | | 2133 | | 287
334 | | | | 504 | | 565
690 | | | | | | | | 2134
2135 | | 331
287
334
319
333 | | | | 566 | | 735
565
690
630
645 | | | | | | | | 2136
2137 | | 368
264 | | | | 518 | | 770
485
525
570
735 | | | | | | | | 2138
2139
2140 | | 264
276
201 | | | | 526 | | 525
570 | | | | | | | | 2141 | | 291
371 | | | | | | 1 | | | | | | | | 2142 | | 289
334 | 167 | 47 | 543 | 498 | 326 | 555
740
745
715
535 | | 1.0 | | 2,070 | 2.82 | 610 | 66 | 2143
2144
2145 | | 334
334
326 | 169
168 | 47
49
47 | 543
540
518 | 498
499
489 | 326
324
315 | 745
715 | | .5 | | 2,070
2,070
2,000 | 2.82
2.82
2.72 | 624
613 | 65
65 | 2145
2146 | | 326
284 | | | | 540 | | | | | | | | | | 2146
2147 | | 370
345
278
326
351 | | | | | | 755
695 | | | | | | | | 2148
2149 | | 278
326 | | | | 490
424 | | 695
545
705
690 | | | | | | | | 2149
2150
2151
2152 | | | 116 | 37 |
629 | 424
584 | 336 | 690 | 2.7 | 1.0 | 8.0 | 2,099 | 2.85 | 442 | 76 | i . | | 321
370
330 | | | | 632 | | 715 :
650 : | | | | | | | | 2153
2154 | | 330
336 | | | | | | 650
695 | | | | | | | | 2155
2156
2157 | | 336
249 | 103 | 31 | 398 | 460 | 228 | 695
450 | | 1.0 | 5.0 | 1.438 | 1.96 | 384 | 69 | 1 | | 330
347
399
230
282 | 174 | 45 | 492 | 496 | 300 | 685
670 | | 4.0 | | 1,944 | 2.64 | 619 | 63 | 2158
2159 | | 399 | | | | | | 670
800
455 | | | | | | | | 2160
2161 | | | | | | 470 | | 455
555 | | | | | | | | 2162 | | 276
276
277
388
342 | | | | 510 | | 530
520 | | | | | | | | 2163
2164
2165
2165 | | 277 | -140 | . 40 | 701 | 688 | 392 | 520
515
755
655 | | 1.0 | 10 | 2,368 | 3. 22 | 514 | 75 | 2165
2165 | | | | | | | | 655 | | | | | | | | 2167 | | 304
277
304 | | | | 474 | | 535 | | | | | | | | 2168
2169 | | 304
290 | 126 | 41 | 491 | 512 | 256 | 615
605 | 1.5 | 10 | 14 | 1, 780 | 2. 42 | 483 | 69 | 2170
2171
2172 | | 290
287 | | | | | | 595 | | | | | | | | į. | | 304
329 | | | | | | 645
685
870 | | | | | | | | $ 2173 \\ 2174$ | | 304
329
386
438
390 | 183
226 | 53
66 | 609
668 | 492
568 | 345
398 | 870
990 | . 6
1. 4 | 9. 4
10 | 17
5.0 | 2, 310
2, 640 | 3. 14
3. 59 | 674
836 | 66
63 | 2173
2174
2175
2176 | | | | | | - - | | 870 | | | | | | | | 2177 | | 465
355 | 164 | 52 | 849 | 712 | 477 | 980
695 | 2.4 | 2.0 | 5.0 | 2, 880 | 3. 92 | 624 | 75 | 2178
2179 | | 346
342
327 | 126
128 | 38
37 | 597
593 | 576
550 | 322
309 | 680
695 | 1.9 | 4.0
4.0 | 7.0 | 2, 051
2, 039 | 2.84
2.77 | 471
472 | 73
73 | 2180
2181 | | | | | | | | 690 | | | | | | | | 2182 | | 266
319 | | | | 233 | | 605 | | | | | | | | 2183
2184 | | 266
319
312
247
243 | | | | | | 640
460 | | | | | | | | 2185
2186 | | 2 43 | | | | | | | | | | | | | | 2187 | | 363
293 | | | , | -+ | | 790 | | | | | | | | 2188
2189 | | 296
321 | | | | | | 585
645 | | | | | | | | 2190
2191 | | 321
317 | | | | 512 | | 645 | | | | | | | | 2192 | | Analysıs No. | Source | Location | Date sampled | Depth of well (feet) | Yield (gallons
per minute) | Temperature (°F.) | |--------------------------------------|--|--|---|-------------------------------|-------------------------------|----------------------------| | 2193
2194
2195
2196
2197 | Driven observation well—Con,
11-42.
11-42.
11-44.
11-48.
11-49. | NW¼SW¼ sec. 32do.
SW¼NW¼ sec. 32
NW¼NE¼ sec. 32
dodo. | Mar. 15, 1943
Sept. 17, 1943
dodododo | 29
29 | 4
5
3
8
8 | 64
65
62
60 | | 2198
2199
2200
2201
2202 | 11-50 | NE¼NW¼ sec. 32do
NW¼NE¼ sec. 32
SE¼NE¼ sec. 32
dodo | do
do
do
Oct. 28, 1943 | | 8
8
8
6 | 66
67
60
64
65 | | 2203
2204
2205
2206
2207 | 11-61 | do | Jan. 4, 1944
Feb. 29, 1944
May 2, 1944
July 10, 1944
Aug. 29, 1944 | | 2
5
4
8
5 | 64
64
63
64
65 | | 2208
2209
2210
2211
2212 | 11-61
11-62
11-62
11-62
11-62 | do
NW¼NE¼ sec. 32
do
do | Oct. 27, 1944
Sept. 16, 1943
Oct. 28, 1943
Jan. 4, 1944
Feb. 10, 1944 | | 5
8
10
8 | 65
67
68
68
65 | | 2213
2214
2215
2216
2217 | 11-62 | do | Feb. 29, 1944
May 2, 1944
July 10, 1944
Aug. 29, 1944
Oct. 27, 1944 | | 10
6
. 6
5
7 | 64
60
61
64
68 | | 2218
2219
2220
2221
2222 | 11-63 | NE¼NW¼ sec. 32
SE¼SW¼ sec. 32
SW¼NW¼ sec. 33
dodo | Sept. 16, 1943
Sept. 17, 1943
Mar. 27, 1940
Mar. 2, 1943
Mar. 27, 1940 | 17. 5
17. 5
17. 5
18 | 8
8 | 65
64
64
63 | | 2223
2224
2225
2226
2227 | Dave Hawkins domestic welldo E. E. Hancock unused welldo Driven observation well, 11-2 | NE¼NW¼ sec. 33 | Mar. 2, 1943
Mar. 27, 1940
Mar. 2, 1943
Aug. 31, 1943 | 27
27
27, 3
27, 3 | 9 | 66
 | | 2228
2229
2230
2231
2232 | do | do
do
NE¼SW¼ sec. 33
do | Sept. 17, 1943
Mar. 12, 1943
Aug. 31, 1943
Sept. 17, 1943
Oct. 28, 1943 | 23. 8
23. 8 | 8
5
3
1
1 | 70
68
67 | | 2233
2234
2235
2236
2237 | 11-55 | do
do
SE¼NW¼ sec. 33
NW¼NW¼ sec. 33 | Jan. 4, 1944
Feb. 10, 1944
May 2, 1944
Sept. 17, 1943 | | 1
.5
8
4 | 65
63
64
64
65 | | 2238
2239
2240
2241 | J. Udall irrigation well. Driven observation well, 6-61 L. E. Hancock irrigation well. Driven observation well, USGS 262. | T. 6 S., R. 24 E.:
SW¼NE¼ sec. 1
SW½SW¼ sec. 1
SE¼NE¼ sec. 2
NE¼SW¼ sec. 2 | May 19, 1943
Aug. 24, 1943
July 22, 1941
Aug. 13, 1940 | 60 | 2 | 68
66
67
67 | | 2242 | 7–22 | SW14SE14 sec. 2 | Aug. 16, 1943 | | 15 | 65 | | 2243
2244
2245
2246
2247 | 7-28 | SE¼SW¼ sec. 2dodoSW¼SW¼ sec. 2dodododododod | Aug. 25, 1943
Aug. 16, 1943
Oct. 11, 1943
Aug. 25, 1943 | | 12
12
9
8
8 | 62
65
65
61
62 | between the mouth of Bonita Creek near Solomonsville and the Southern Pacific Railat Calva—Continued [Analyses in parts per million] | Specific conduct-
ance (KX10 at
25° C.) | Calcium (Ca) | Magnesium
(Mg) | Sodium and po-
tassium (Na+K) | Bicarbonate (HCO3) | Sulfate (SO4) | Chloride (C1) | F) | Nitrate (NO3) | Borate (BO ₃) | Disso
sol | olved
ids | Total hardness
as CaCO ₂ | Percent sodium | Analysis No. | |---|----------------|-------------------|----------------------------------|--------------------|---------------|---|--------------|---------------|---------------------------|----------------------|-----------------------|--|----------------|----------------------| | 8M~ |) a | ig (2 | 86 | င်နှ | 8 |) e | Fluoride (F) | 8 | 9 | i d | # # # | 1 2 C | S | [3] | | E go | _ <u> </u> | Zee | | 温田 | te | rid | 댴 | ate | ę. | Parts per
million | Tons per
acre-foot | 45° | l ti | ysi | | 8 E & | E. | ag C | - 2 5 | . <u></u> | l sa | 월 | l on | 1 15 | l az | l til | ie si | 88 | 100 | E | | S | Ö | Z | % द | E P | SZ | 5 | 도 | Z | Ř | A 1 | E & | Ĕ |) Å | ₹ | | | | | | | <u> </u> | | | J | <u> </u> | | | | | | | | | l | İ | | | | i | | 1 | | | | | | | 305
275 | | | - | 504 | | 615
535 | | | | | | | | 2193
2194 | | 349 | | | | } | | 755 | | | | | | | | 2194 | | 294
232 | | | | | | 575 | | | | | | | | 2196
2197 | | 232 | | | | | | 445 | | | | | | | | 2197 | | 260
259 | | | | | l | | | | | | l | | | 2198 | | 259 | | | | | | 480 | | | | | | | | 2198
2199 | | 335
400 | | | | | | 715
860 | | | | | | | | 2200 | | 393 | 214 | 64 | 612 | 486 | 496 | 840 | 1.8 | 30 | 10 | 2, 500 | 3. 40 | 797 | 63 | 2201
2202 | | ł | | "- | | | | ł | | 00 | ~~ | _, 000 | 0.10 | | " | ļ | | 393 | | | | | | 840
850 | | | | | | | | 2203 | | 400
420 | | | | | | 850
890
930 | | | | | | | | 2204
2205 | | 436 | | | | | | 930 | | | | | | | | 2206 | | 427 | | | | | | 905 | | | | | | | | 2207 | | 406 | | | | Í | | 860 | l | | Í | | | | | 2208 | | 385
428 | | | | 532 | ==- | 765
905 | | -== | | | | | | 2208
2209
2210 | | 384 | 217 | 65 | 698 | 554 | 552 | 905
770 | 2.1 | 21 | | 2, 730 | 3, 71 | 809 | 65 | 2210
2211 | | 403 | | | | 576 | | 802 | | | 6. 2 | | | | | 2212 | | 40. | [| | · | { | | 000 | | 1 | | | | | | 2010 | | 401
332 | 147 | 40 | 551 | 554 | 360 | 830 | 2. 2 | 6.0 | | 2,010 | 2.73 | 532 | 69 | 2213
2214 | | 332
398
376 | 111 | 40 | 501 | | 300 | 630
810 | 2. 2 | 0.0 | | 2,010 | 2. 10 | 002 | | 2215
2216 | | 376 | | | | | | 760 | | | | | -= | | | 2216 | | 431 | 216 | 60 | 704 | 526 | 534 | 915 | 2.1 | 42 | | 2, 730 | 3.71 | 786 | 66 | 2217 | | 292
300 | 132 | 38 | 470 | 532 | 289 | 540
610 | | 11 | l | 1,742 | 2.37 | 486 | 68 | 2217 | | 300 | | | | 555- | | 610 | | | | | | | | 2219 | | 208
228 | | | | 335
376 | 180 | 410 | 3.8 | 18 | | |] | 195 | | 2220
2221 | | 350 | | | | 374 | 450 | 400
750 | .2 | 147 | | | | 488 | | 2222 | | 490 | | | | 400 | 000 | í | 1.0 | 10 | | | | 720 | | 2222 | | 404 | 147 | 58 | 688 | 466
503 | 800
491 | 1,060
820
1,155 | 1.6 | 16
22 | 1.8 | 2, 476 | 3.37 | 606 | 71 | 2223
2224 | | 490 | | | | 285 | 1,000 | 1, 155 | 1.8
2.8 | 10 | | | | 652 | | 2225 | | 449
325 | | | | 183 | | 955
660 | | | | | | | | 2225
2226
2227 | | 1 | | | | [| | | | | | | | | [| ł | | 338
266 | | | | | | 680
495
485 | | | | | | | | 2228
2229 | | 250
252 | | | | 544 | | 495 | | | | | | | | 2229
2230 | | 560
610 | | | | | | 1, 270 | | | | | | | | 2231
2232 | | 610 | 286 | 90 | 1,060 | 466 | 886 | 1, 450 | 1.6 | 36 | | 4, 040 | 5.49 | 1,080 | 68 | 2232 | | 588 | | | | | ' | 1, 340 | · | | İ | | | | | 2233 | | 588
607 | | | | 616 | | 1,340
1,360
1,340
1,005
750 | | | 5. 9 | | | | | 2234 | | 605
486
370 | - - | | | | | 1,340 | | | | | | | | 2235 | | 370 | | | | | | 750 | | | | | | | | 2236
2237 | | | | | | | | ''' | | | | | | | | | | 1,010 | | | . ! | ļ | | 2 070 | | | 1 | | l | l | | 2238 | | 244 | | | | 672 | | 2,070
370 | | | | | | | | 2239 | | 938 | 192 | 92 | 1,929 | 672
740 | 1,881 | 1,800 | 4.6 | 9.7 | - - | 6, 200 | 8.43 | 857 | 83
86 | 2240
2241 | | 1,090 | 162 | 113 | 2, 451 | 642 | 2, 179 | 2,414 | | | | 7, 640 | 10.4 | 868 |
86 | 2241 | | 622 | | | | | | 1, 265 | | | | | | | | 2242 | | 289 | | | ł | | | 575 | ٠., | | } | | <u> </u> | | | 2243 | | 700 | | | | | | 1,455 | | | | | | | | 2243 | | 685 | 145 | 45 | 1, 457 | 934 | 989 | 1.355 | 2.4 | 1.0 | | 4, 450 | 6.05 | 547 | 85 | 2245 | | 297
349 | | | | 568 | | 610 | | | | | | | | 2246
2247 | | 349 | '' | | · | 908 | 'ا | 740 | ' | | | | | | '' | 4241 | | Analysis No. | Source | Location | Date sampled | Depth of well (feet) | Yield (gallons
per minute) | Temperature (°F.) | |--------------------------------------|--|--|--|----------------------|-------------------------------|----------------------------| | 2248
2249
2250
2251
2252 | Driven observation well—Con. 7-35. 7-39. 7-40. 7-41. 7-41. | SW¼SW¼ sec. 2do
do

NW¼SW¼ sec. 2do | Aug. 16, 1943
Aug. 25, 1943
do
Aug. 16, 1943
Feb. 9, 1944 | | 1
3
10
10 | 69
62
63
65
62 | | 2253
2254
2255
2256
2257 | 7-42 | do
dodo | Aug. 24, 1943
Oct. 27, 1943
Jan. 4, 1944
Feb. 9, 1944
Feb. 29, 1944 | | 8
2
3 | 67
66
65 | | 2258
2259
2260
2261
2262 | 7-42
7-42
7-42
7-42
7-42
7-43 | do
do
do
SW/4SW/4 sec. 2 | May 2, 1944
July 10, 1944
Aug. 29, 1944
Oct. 27, 1944
Aug. 25, 1943 | | 2
6
4
2
8 | 64
65
67
67
63 | | 2263
2264
2265
2266
2267 | 7-44
7-45
7-50
7-51
7-52 | do
NW¼SW¼ sec. 2
SW¼SE¼ sec. 2
do
SW¼SW¼ sec. 2 | do
Feb. 9, 1944
Oct. 11, 1943
dodo | | 10
4
5
1 | 62
61
64
66
66 | | 2268
2269
2270
2271
2272 | 7-55 | NW¼SW¼ sec. 2do
SW¼NW¼ sec. 2
NE¼NE¼ sec. 3
SE¼SE¼ sec. 3 | Sept. 28, 1943
Feb. 9, 1944
Sept. 17, 1943
Mar. 2, 1943
Oct. 4, 1943 | 18 | 4
8
8 | 66 | | 2273
2274
2275
2276
2277 | 8-2 | do
dodododo | Aug. 26, 1943
Aug. 25, 1943
Oct. 29, 1943
Jan. 5, 1944
Feb. 28, 1944 | | 1
8
5
5 | 66
63
64
61
58 | | 2278
2279
2280
2281
2282 | 8-3 | do
do
do
do
NE¼SE¼ sec. 3 | May 2, 1944
July 11, 1944
Aug. 30, 1944
Oct. 30, 1944
Aug. 16, 1943 | | 3
2
5
5
10 | 59
61
63
64
68 | | 2283
2284
2285
2286
2287 | 8-4
8-5
8-6
8-8
8-9 | do
SE¼SE¼ sec. 3
do
SW¼SE¼ sec. 3
NE¼SE¼ sec. 3 | Feb. 9, 1944
Aug. 25, 1943
Aug. 26, 1943
Aug. 25, 1943
Aug. 16, 1943 | | 12
4
1
1 | 66
65
62
66
65 | | 2288
2289
2290
2291
2292 | 8-10 | do
do | Sept. 28, 1943
Aug. 26, 1943
Aug. 16, 1943
Aug. 25, 1943
Aug. 16, 1943 | | 1.5
12
7
8
15 | 62
65
65 | | 2293
2294
2295
2296
2297 | 8-15
8-16
8-17
8-18
8-19 | do
NE¼SW¼ sec. 3
do
SW¼NE¼ sec. 3
NE¼SW¼ sec. 3 | Aug. 26, 1943
Aug. 16, 1943
Aug. 26, 1943
Aug. 16, 1943 | | 14
3
10
8
12 | 64
66
63
67 | | 2298
2299
2300
2301
2302 | 8-20
8-21
8-22
8-23
8-23 | SE¼NW¼ sec. 3
SW¼NE¼ sec. 3
NE¼SW¼ sec. 3
SE¼NW¼ sec. 3
do | Aug. 26, 1943
— do
Oct. 12, 1943
Aug. 26, 1943
Oct. 27, 1943 | | 5
1
2
9
2 | 64
69
73
63
64 | | 2303
2304
2305
2306
2307 | 8-23
8-23
8-23
8-23
8-23
8-23 | do
dodododo | Jan. 4, 1944
Feb. 9, 1944
Feb. 29, 1944
May 2, 1944
July 10, 1944 | | 3
 | 62
58
59
59
61 | between the mouth of Bonita Creek near Solomonsville and the Southern Pacific Railat Calva—Continued [Analyses in parts per million] | Specific conductance (K×10° at 25° °C.) | Calcium (Ca) | ssium
(g) | n and po-
n (Na+K) | Biearbonate
(HCO3) | (8O4) | Ohloride (CI) | de (F) | Nitrate (NO3) | Borate (BOs) | | olved
ids | Total hardness
as CaCO ₃ | Percent sodium | is No. | |---|--------------|-------------------|-----------------------|-----------------------|------------------|--------------------------------------|--------------|---------------|--------------|----------------------|-----------------------|--|----------------|---------------------------------------| | Specifi
ance
25 °C | Calcin | Magnesium
(Mg) | Sodium
tassium | Bieal | Sulfate (SO4) | Chlori | Fluoride (F) | Nitrat | Borate | Parts per
million | Tons per
acre-foot | Total l | Percen | Analysis No. | | 716
360
417 | | | | 600 | | 1, 520
765 | | | | | | | | 2248
2249
2250 | | 417
851
816 | | | | 866
854 | | 915
1,700
1,610 | | | 20 | | | | | 2250
2251
2252 | | 845
863
964 | 190 | 93 | 1, 850 | 772
778 | 1, 533
1, 580 | 1, 680
1, 820
2, 140
2, 080 | 4.8 | 31 | 25
 | 5, 950 | 8.09 | 856 | 82 | 2253
2254
2255 | | 971
956
945 | | | | 828 | | 2,080
1,960 | | | 23
30 | | | | | 2256
2257
2258 | | 924
896
889
350 | | | | | | 1, 910
1, 880
1, 860
720 | | | | | | | | 2259
2260
2261
2262 | | 409
834
687
655 | | | | 676
834 | | 900
1,630 | | | 20 | | | | | 2263
2264 | | 689 | | | | 758 | | 1, 240
1, 415 | | | | | | | | 2265
2266
2267 | | 858
915
742
625
341 | 126 | 60 | 1,604 | 792
750
944 | 1, 363 | 1, 710
1, 880
1, 410
1, 100 | 6. 4 | 11 | 20
33 | 4, 950 | 6. 73 | 561 | 86 | 2268
2269
2270
2271
2272 | | 279 | | | | | | 1, 100
725
625 | | | | | | | | 2272
2273
2274 | | 292
291
294
318 | 168 | 64 | 420 | 624 | 245 | 560
585
595
660 | 1, 5 | .5 | 5.0 | 1,790 | 2. 43 | 682 | 57 | 2275
2276
2277 | | 319
297
293
290
823 | | | | | | 630
580
575 | | | | | | | | 2278
2279
2280 | | 290
823
812 | 193 | 76 | 1,708 | 802
804 | 1,462 | 580
1,630 | 2. 2 | 27 | 25
18 | 5, 490 | 7.47 | 794 | 82 | 2281
2282 | | 404
304
391
554 | | | | | | 1,580
860
560
840
1,065 | | | | | | | | 2283-
2284
2285
2286
2287 | | 959
402 | | | | 728 | | 1,980
835 | | | | | | | | 2288
2289 | | 1,130
462 | | | | 610 | | 2, 493
935 | | | | | | | | 2290
2291
2292 | | 1,047
374
1,100
1,190 | 261
 | 104
 | 2, 241 | 832 | 1, 962
 | 2, 270
850
2, 320
2, 590 | 1.8 | 25
 | 40 | 7, 270 | 9.89 | 1,079 | 82 | 2293
2294
2295
2296 | | 1, 190
321
1, 300
1, 400 | | | | | | 3,010 | | | | | | | | 2296
2297
2298 | | 1,400
228
1,390
1,320 | 419 | 176 | 2, 910 | 876 | 2, 710 | 3, 450
3, 230
3, 060 | | | | 9, 880 | 13. 4 | 1, 769 | 78 | 2299
2300
2301
2302 | | 1, 250
1, 310
1, 330 | | | | 892 | | 2, 910
2, 920
3, 060 | | | 29 | | | | | 2303
2304
2305
2306 | | 1,480
1,390 | 462 | 196 | 3, 330 | 886 | 2, 770 | 3, 960
3, 230 | 2.4 | 2. 5 | 30 | 11, 200 | 15. 2 | 1,960 | 79 | 2306
2307 | | Analysis No. | Source | Location | Date sampled | Depth of well (feet) | Yield (gallons
per minute) | Temperature (oF.) | |--|---|--|--|----------------------------|-------------------------------|----------------------------| | 2308
2309
2310
2311
2312 | Driven observation well—Con. 8-23. 8-23. 8-24. 8-25. 8-28. | SE¼NW¼ sec. 3do
dosw¼NW¼ sec. 3
SE¼NW¼ sec. 3
SW¼NW¼ sec. 3 | Aug. 29, 1944
Oct. 31, 1944
Aug. 26, 1943
do | | 1
1
8
4 | 64
62

65 | | 2313
2314
2315
2316
2316
2317 | 8-28.
8-28.
8-28.
8-28. | do | Oct. 27, 1943
Jan. 4, 1944
Feb 29, 1944
May 2, 1944
July 10, 1944 | | 3
4
5
4
4 | 67
66
66
66
66 | | 2318
2319
2320
2321
2322 | 8-28.
8-28.
8-31.
8-31.
8-34. | do
SW¼SW¼ sec. 3
do
SW¼NW¼ sec. 3 | Aug. 29, 1944
Oct. 27, 1944
Aug. 26, 1943
Apr. 13, 1944
Oct. 12, 1943 | | 2
3
4
6 | 66
66
66
64
67 | | 2323
2324
2325
2326
2327 | 8-35
8-35
8-36
8-37
8-38 | NW¼SW¼ sec. 3dodododose¼NE¼ sec. 3 | Aug. 26, 1943
Apr. 13, 1944
Oct. 12, 1943
Apr. 13, 1944
Sept. 17, 1943 | | 12
8
1
2 | 65
63
67
63
68 | | 2328
2329
2330
2331
2332 | 8-39
8-40
8-41
8-42
8-46 | do | do
do
Sept. 29, 1943 | | 6
4
8
8
8 | 66
66
66
65 | | 2333
2334
2335
2336
2337 | 8-47
8-49
8-51
8-52
Wm. Carpenter irrigation well | do | Aug. 16, 1943
Aug. 25, 1943
Aug. 26, 1943
July 19, 1940 | 53 | 9
4
12
11
225 | 66
65
66
66 | | 2338
2339
2340
2341
2342 | do_
Curtis Canal Co. welldo
Wm. Carpenter unused well
Toad Haggard irrigation well,
USGS 268. | do
SE¼NE¼ sec. 4
do
NE¼NE¼ sec. 4
do | May 5, 1943
May 28, 1940
Apr. 15, 1943
Feb. 27, 1943
July 18, 1940 | 53
52
52
52
58 | 557
 | 66 | | 2343
2344
2345
2346
2347 | dodo Frank Mathews irrigation welldo Fred Sanchez unused well | do
SW¼SE¼ sec. 4
dodo | June 2, 1944
June 12, 1944
Feb. 26, 1942
Feb. 27, 1943
Mar. 1, 1943 | 58
58
48
48
30 | | | | 2348
2349
2350
2351
2352 | Seepage in Gila River channel | SE'4NW'4 sec. 4
SW'4SW'4 sec. 4
SE'4SE'4 sec. 4
NE'4SE'4 sec. 4 | Sept. 12, 1941
Mar. 15, 1943
Aug. 27, 1943
Aug. 26, 1943
Apr. 13, 1944 | 58.8 | 40
4
3
1 | 68
67
63 | | 2353
2354
2355
2356
2357 |
8-33
8-33
8-33
9-1
9-2 | do | Aug. 27, 1943
—do
Apr. 14, 1944
Aug. 27, 1943
—do | | 8
6
1
.1 | 69
63
69
69 | | 2358
2359
2360
2361
2362 | 9-3
9-3
9-4
9-7
9-8 | NE¼SE¼ sec. 4dodosE¼SE¼ sec. 4dodo | A 1107 30 1043 | | 8
12
4
1
8 | 71
75
71
68 | | | | | | | | | | | | | | | | | |--|---------------|-------------------|-------------------|-----------------------|---------------|--------------------------------|--------------|--------------------|---------------------------|----------------------|-----------------------|----------------------------|----------------|------------------------------| | Specific conduct-
ance (KX10° at
25° C.) | (Ca) | ium
() | and po-
(Na+K) | Bicarbonate
(HCO3) | (804) | (CI) | e (F) | (NO ₃) | (BO ₃) | sol | olved
ids | ardness
100s | Percent sodium | s No. | | Specific
ance (
25° C. | Calcitim (Ca) | Magnesium
(Mg) | Sodium (tassium) | Bicar (H | Sulfate (SO4) | Chloride (Cl) | Fluoride (F) | Nitrate (NO3) | Borate (BO ₃) | Parts per
million | Tons per
acre-foot | Total hardness
as CaCOs | Percent | Analysis No. | | 1, 300
1, 270
1, 210 | | | | | | 2, 960
2, 860 | | | | | | | | 2398
2309 | | 1,210
1,040
410 | | | | 1,010 | 2, 151 | 2,860
2,640
2,025
790 | | | | | | | | 2310
2311
2312 | | 450
493 | 123 | 46 | 882 | 664 | 542 | 920
1,030 | 2. 2 | 2.0 | 10 | 2,840 | 3.86 | 496 | 79 | 2313
2314
2315 | | 463
422
336 | 60 | 20 | 684 | 560 | 321 | 940
840
650 | 3. 1 | . 5 | 6.0 | 2,010 | 2. 73 | 232 | 87 | 2315
2816
2317 | | 368
407 | | | | | | 720
820 | | | | | | | | 2318
2319 | | 424
404
379 | | | | | | 870
810 | | | | | | | | 2320
2321
2322 | | 347
371 | 120 | 37 | 621 | 582 | 296 | 705
765 | | 29 | | 2, 095 | 2. 85 | 452. | 75 | 2323 | | 342
381 | | | | | | 795 | | | | | | | | 2324
2325
2326 | | 1,050
1,130 | | | | 114 | 2, 068 | 2, 450
2, 440 | | | | | | | | 2327 | | 1, 190
1, 130
1, 130 | 180 | 107 | 2, 530 | 685 | 2, 540 | 2, 340 | 4, 5 | 14 | 33 | 7, 950 | 10.8 | 889 | 86 | 2329
2330
2331
2332 | | 370
426 | | | | | | 745 | | | | | | | | | | 829
418 | | | | 806 | | 875
1,650
865 | | | | | | | | 2333
2334
2335 | | 340
510 | | | | 532 | 850 | 1, 088 | | | | | | 488 | | 2336
2337 | | 912
540
883
433 | 350 | 128 | 1,618 | 460
732 | 950
1,486 | 2,140
1,090
1,960 | 1. 4 | 4.0 | 5. 0 | 5, 910 | 8. 04 | 450
1,400 | 72 | 2338
2339
2340 | | 433
480 | | | | 170
450 | 1,050 | 1, 150
1, 012 | | | | | | 585 | | 2341
2342 | | 1,040
1,050 | 584 | 196 | 1,800 | 768 | 2, 040 | 2, 450
2, 420 | .7 | 5. 0 | 20 | 7,420 | 10. 1 | 2,260 | <u></u> | 2343
2344 | | 317
316
973 | 26 | 16 | 660 | 502
1, 208 | 242 | 640
630 | 3. 5 | 5, 0 | 2.0 | 1,830 | 2.49 | 131 | 92 | 2345
2346
2347 | | 239
600 | 86
111 | 43
57 | 430
1, 181 | 472
661 | 197
518 | 520
1,380 | . 4
1. 6 | . 5
58 | 4.0 | 1, 509
3, 630 | 2. 05
4. 94 | 391
512 | 70
83 | 2348
2349 | | 588
402
421 | 139 | 50 | 760 | 686 | 363 | 1, 290
855
880 | 1.4 | 26 | 1.5 | 2, 560 | 3. 48 | 552 | 75 | 2350
2351
2352 | | 346
333 | | | | | | 700
740 | | | | | | | | 2353
2354 | | 371
499
359 | 141 | 51 | 634 | 608 | 340 | 765
1,085
800 | 1.4 | 5. 0 | .8 | 2, 240 | 3.05 | 562 | 71 | 2355
2356
2357 | | 355
353
290
534 | 144 | 40 | 617 | 612
618 | 317 | 720
725
545 | | 8. 5 | | 2, 156 | 2. 93 | 524 | 72 | 2358
2359
2360 | | 534
372 | | | | 223 | | 1,460
855 | | | | | | | | 2361
2362 | | Analysis No. | Source | Location | Date sampled | Depth of well (feet) | Yield (gallons
per minute) | Temperature (°F.) | |--------------------------------------|--|---|---|-------------------------|-------------------------------|------------------------------| | 2363
2364
2365
2366
2367 | Driven observation well—Con. 9-9. 9-9. 9-10. 9-10. 9-11. | NE¼SE¼ sec. 4
do
NW¼SE¼ sec. 4
do
SW¼SE¼ sec. 4 | Aug. 30, 1943
Aug. 24, 1943
Aug. 30, 1943
Oct. 2, 1943
Aug. 27, 1943 | | 3
8
. 25
8
3 | 66
71
69
71 | | 2368
2369
2370
2371
2372 | 9-11 | do
do
do
do | Oct. 30, 1943
Jan. 5, 1944
Feb. 28, 1944
May 2, 1944
July 11, 1944 | | 4
2
1
. 75
1 | 72
64
60
64
68 | | 2373
2374
2375
2376
2377 | 9-11 | do
NW¼8E¼ sec. 4
dodo | Aug. 30, 1944
Oct. 30, 1944
Aug. 27, 1943
Aug. 30, 1943 | | .5
.7
4
4
1 | 71
70
67
66 ·
69 | | 2378
2379
2380
2381
2382 | 9-14 | do
SW¼SE¼ sec. 4
do
NW¼SE¼ sec. 4
dodo | Oct. 2,1943
Aug. 27,1943
Apr. 13,1944
Aug. 27,1943
Oct. 5,1943 | | 8
5
1
8 | 68
67
67
62 | | 2383
2384
2385
2386
2387 | 9-18 | dodo
SW/NE/4 sec. 4
NW/4NE/4 sec. 4
dodo | Aug. 30, 1943
do
Aug. 31, 1943
Sept. 17, 1943 | | .5
1
1
.5
1 | 70
69
69
69
68 | | 2388
2389
2390
2391
2392 | 9-22
9-22
9-23
9-24
9-25 | SW¼SE¼ sec. 4
do
NE¼SW¼ sec. 4
do
do | Aug. 27, 1943
Apr. 13, 1944
Aug. 27, 1943
Aug. 30, 1943 | | 1
1
10
6
5 | 68
66
73
61
65 | | 2393
2394
2395
2396
2397 | 9-26
9-27
9-28
9-28
9-28 | SE¼NW¼ sec. 4
do
NE¼NW¼ sec. 4
dodo | Aug. 31, 1943
Mar. 12, 1943
Aug. 31, 1943
Apr. 13, 1944 | 18. 8
18. 8
18. 8 | 1
4
2
10
1.5 | 66
65

63 | | 2398
2399
2400
2401
2402 | 9-30 | NE¼SW¼ sec. 4do
SE¼NW¼ sec. 4
NE¼NW¼ sec. 4do | Aug. 27, 1943
 | 22
22 | 4
2
2
5
6 | 64
69
66 | | 2403
2404
2405
2406
2407 | 9-34
9-35
9-36
9-36 | do
NE¼SW¼ sec. 4
NE¼SW¼ sec. 4
dodo | Apr. 13, 1944
do
Aug. 27, 1943
Oct. 30, 1943
Jan. 5, 1944 | 22 | 2
2
3
1.5 | 66
67
69
70
69 | | 2408
2409
2410
2411
2412 | 9-36.
9-36.
9-36.
9-36. | do
dodo
dodo | Feb. 28, 1944
May 2, 1944
July 11, ,944
Aug. 30, 1944
Oct. 30, 1944 | | 1
1
2
1
1.5 | 61
57
62
67
70 | | 2413
2414
2415
2416
2417 | 9-37 | do
do
\$E¼NW¼ sec. 4
do | Aug. 28, 1943
Apr. 13, 1944
Aug. 27, 1943
Apr. 13, 1944
Aug. 27, 1943 | | 8
3
12
5
4 | 67
63
66
61
68 | | 2418
2419
2420
2421
2422 | Sampled by bailingdo
Sampled by pumpingdo | l do | Mar. 15, 1944
do
Apr. 13, 1944
Aug. 27, 1943 | | 5
6
2 | 63
62
63
63
67 | between the mouth of Bonita Creek near Solomonsville and the Southern Pacific Railat Calva—Continued [Analyses in parts per million] | Analysis No. | Source | Location | Date sampled | Depth of well (feet) | Yield (gallons
per minute) | Temperature
(°F.) | |--------------------------------------|---|--|---|----------------------|-------------------------------|----------------------------| | 2423
2424
2425
2426
2427 | Driven observation well—Con. 9-40 | NE¼NW¼ sec. 4dodododoNE¼SE¼ sec. 4NW¼SW¼ sec. 4 | Apr. 13, 1944
Aug. 27, 1943
Apr. 13, 1944
Sept. 17, 1943
Sept. 29, 1943 | | 1
13
5
2
6 | 62
66
63
70 | | 2428
2429
2430
2431
2432 | 9-58.
9-59.
11-1.
11-1.
11-5. | do | Apr. 13, 1944
Sept. 29, 1943
Aug. 31, 1943
Sept. 17, 1943
Mar. 12, 1943 | 22. 4 | 2
4
3
5
6 | 62
68 | | 2433
2434 | 11-5
M. N. Ferguson irrigation well,
USGS 271. | do
NE¼NE¼ sec. 5 | Aug. 30, 1943
Apr. 14, 1943 | 22. 4
63 | 10
 | 66
66 | | 2435
2436
2437 | J. F. Ferguson unused well | SE¼NE¼ sec. 5
do
SW¼NE¼ sec. 5 | Mar. 25, 1940
Feb. 26, 1942
May 1, 1943 | 58
58
64 | | 69 | | 2438
2439
2440 | Driven observation well, 10-1 10-2 | SE¼NE¼ sec. 5
NW¼NE¼ sec. 5
NW¼NW¼ sec. 9 | Oct. 5, 1943
Aug. 30, 1943
May 19, 1943 | | 8
8 | 64
64
69 | | 2441
2442 | Spring in Mathews Wash | SW¼SE¼ sec. 9 | Oct. 14, 1940
June 25, 1941 | | 5
5 | 72 | | 2443
2444
2445
2446
2447 | Spring in Mathews Wash do Driven observation well, 9-6 do do do | dodo | Oct. 14, 1940
May 26, 1941
Aug. 27, 1943
Oct. 29, 1943
Jan. 5, 1944 | | 10
10
8
5
2 | 73
73
70
66 | | 2448
2449
2450
2451
2452 | do
do
do
ddo947 | do
do
do
SE¼SE¼ sec. 9 | Feb. 28, 1944
May 2, 1944
July 11, 1944
Aug. 30, 1944
Apr. 13, 1944 | | 1
.5
.25
.2 | 63
63
69
74
66 | | 2453
2454
2455
2456
2457 | Dean unused well. Lamar Bellman irrigation well do. Driven observation well, 7-69 8-45. | SE\SW\\ sec. 10
SE\\\NE\\\ sec. 10
do
NE\\\NE\\\ sec. 10
do | Mar. 29, 1940
July 18, 1940
May 1, 1943
Aug. 23, 1943
Sept. 29, 1943 | 60
53
53 | 849

12
10 | 64
67
67
64 | | 2458
2459
2460 | 8-48.
8-50.
Guy Anderson irrigation well,
USGS 277. | SELANWL sec. 10
NWLANWL sec. 10
SELASWL sec. 11 | Aug. 27, 1943
Aug. 25, 1943
July 16, 1940 | | 5
6 | 69
67
68 | | 2461
2462 | Drain to Gila River from left | NE¼SE¼ sec. 11 | Sept. 16, 1943
Sept. 12, 1941 | | 10 | | | 2463
2464
2465
2466
2467 | Seepage in
Gila River channel Driven observation well, 6-50 6-54 | NEWNEW sec. 11
NEWNEW sec. 11
NEWNEW sec. 11
NEWNEW sec. 11
SEWNEW sec. 11 | Oct. 4, 1943
Aug. 4, 1943
Aug. 23, 1943 | | 5
8
7
10
11 | 62
64
66
68 | | 2468
2469
2470
2471
2472 | 7-3 | do | Aug. 4, 1943
Oct. 27, 1943
Jan. 4, 1944
Feb. 29, 1944
May 2, 1944 | | 12
12
10
10
8 | 61
63
62
60
60 | | 2473
2474
2475
2476
2477 | 7-3 | do | July 10, 1944
Aug. 29, 1944
Oct. 27, 1944
Aug. 23, 1943
Oct. 29, 1943 | | 8
8
5
5
5 | 61
62
63
67
66 | between the mouth of Bonita Creek near Solomonsville and the Southern Pacific Railat Calva—Continued | Specific conduct-
ance (KX10 ⁸ at
25° C.) | Calcium (Ca) | Magnesium
(Mg) | Sodium and po-
tassium (Na+K) | Bicarbonate
(HCO3) | Sulfate (SO4) | Chloride (Cl) | Fluoride (F) | Nıtrate (NO3) | Borate (BO ₃) | Parts per
million | Tons per acre-foot | Total hardness
as CaCO3 | Percent sodium | Analysis No. | |--|--------------|-------------------|----------------------------------|-----------------------|---------------|-----------------------------------|--------------|----------------|---------------------------|----------------------|--------------------|----------------------------|----------------|--------------------------------------| | | 1 | | | | | | | | | | | | | | | 302
313
288
427
407 | 104 | 40 | 756 | 70
542 | 360 | 615
615
585
1,065
875 | 1.4 | 15 | 6, 5 | 2,418 | 3. 29 | 424 | 80 | 2423
2424
2425
2426
2427 | | 332 | 92 | 37 | 621 | 548 | 297 | 680 | 1.5 | 13 | 2.0 | 2,010 | 2. 73 | 382 | 78 | | | 399 | 92 | 01 | 021 | 348 | 201 | | 1.0 | 19 | 2.0 | 2,010 | 2. 13 | 302 | 18 | 2428
2429 | | 390
389 | | | | | | 810
845 | | | | | | | | 2430 | | 312 | 148 | 41 | 504 | 584 | 284 | 605 | 1.9 | 1.0 | 5.0 | 1,873 | 2. 55 | 538 | 67 | 2431
2432 | | 305 | 145 | 39 | 483 | 574 | 278 | 575 | | 20 | ŀ | 1,805 | 2.45 | 522 | 67 | 2433 | | 456 | 125 | 43 | 825 | 498 | 402 | 1,025 | | 2.0
18 | 3. 5 | 2,680 | 3.64 | 489 | 79 | 2434 | | 187 | | | | 285 | 200 | 335 | | ĺ | | | | 78 | | 2425 | | 466 | | | | 200 | | 1.100 | | | | | | | | 2435
2436 | | 614 | | | - | | | 1,495 | | | | | | | | 2437 | | | | ĺ | | | | 1 | | | | | | | | | | 395
281 | 104 | 29 | 487 | 490 | 229 | 830
560 | | 9.6 | | 1,660 | 2. 26 | 378 | 74 | 2438 | | 1,860 | 104 | 29 | 407 | 490 | | 5, 560 | | 9.0 | | 1,000 | 2. 20 | 010 | | 2439
2440 | | 1 | | | | 724 | 200 | 460 | 2, 4 | | 1 | | | 126 | | 1 | | 290
344 | 44 | 29 | 707 | 662 | 378 | 580 | 1.8 | 8.7 | | 2,074 | 2.82 | 229 | 87 | 2441
2442 | | | | | - | 606 | 220 | | | l | | | | | | | | 290
339 | 28
36 | 22
25 | 710 | 686
640 | 339
379 | 445
570 | 2. 5 | 8.6 | | 2,046 | 2.78 | 90
193 | 89 | 2443
2444 | | 490 | | | | | | 1.075 | | | | | | | | 2445 | | 566
484 | 24 3 | 71 | 1,020 | 870 | 533 | 1,310
1,080 | .6 | 7.4 | 18 | 3, 610 | 4. 91 | 898 | 71 | 2446
2447 | | 1 | 100 | | | | 0.00 | 1 | | | | | | 404 | | | | 394
392 | 128 | 40 | 760 | 752 | 359 | 800
740 | 2. 2 | 16 | 5 . 0 | 2, 480 | 3.37 | 484 | 77 | 2448
2449 | | 356 | | | | | | 715 | | | | | | | | 2450 | | 374
332 | | | | | | 855
680 | | - - | | | | | | 2451
2452 | | | | | | | | Į. | | | | | | | | | | 320
290 | | | | 654
622 | 250
140 | 645
525
680 | 1.5 | 5.0 | | | | 315
248 | | 2453
2454 | | 340 | 56 | 44 | 647 | 622
522 | 329 | 680 | | | | 2, 013 | 2. 20 | 321 | 81 | 2455 | | 430
307 | 176 | 65 | 724 | 654 | 414 | 895
560 | 1.4 | 58 | 5.0 | 2, 660 | 3. 62 | 706 | 69 | 2456
2457 | | | | | | | | | | | | | | | | - | | 339
350 | | | | | | 630
635 | | | | | | | | 2458
2459 | | 246 | | | | 522 | 160 | 475 | | | | | | 465 | | 2460 | | 243 | 90 | 43 | 405 | 529 | 173 | 450 | 1.1 | 39 | İ | 1 469 | 1.99 | 401 | 69 | 2641 | | 299 | 100 | 52 | 485 | 340 | 205 | 720 | 1.1 | 8.9 | | 1, 462
1, 740 | 2.37 | 463 | 69 | 2462 | | 410 | 194 | 59 | 830 | 776 | 514 | 960 | 1.7 | 1.0 | | 2, 940 | 4.00 | 727 | 71 | 2463 | | 283
424 | | | | | | 575
800 | | | | 2,010 | | | | 2464 | | 328 | | | | 538 | | 800
705 | | | | | | | | 2465
2466 | | 403 | 144 | 35 | 696 | 522 | 239 | 940 | 2. 5 | 9.6 | 16 | 2, 323 | 3.16 | 504 | 75 | 2467 | | 488 | | | | | | 920 | | | l | | | | | 2468 | | 504 | 145 | 51 | 1,010 | 882 | 603 | 980 | 5.8 | 21 | 20 | 3, 250 | 4. 42 | 572 | 79 | 2469 | | 506
477 | | | | | | 990
905 | - - | | | | | | | $\frac{2470}{2471}$ | | 445 | 116 | 40 | 906 | 825 | 553 | 905
815 | 4.9 | 11 | 5.0 | 2, 850 | 3.88 | 454 | 81 | 2471 | | 467 | 1 | 1 | 1 | 1 | | 860 | | ŀ | | · | | | | 2473 | | 475 | | | | | | 890 | | | | | | | | 2474 | | 489
294 | | | | | | 945 | | | | | | | | 2475
2476 | | 245 | 149 | 45 | 335 | 470 | 185 | 605
500 | .7 | 2.0 | 5.0 | 1, 450 | 1. 97 | 557 | 57 | 2477 | | • | 879751- | | -12 | | | | | | | | | | | | | • | 010101 | -00 | 12 | | | | | | | | | | | | | Analysis No. | Source | Location | Date sampled | Depth of well (feet) | Yield (gallons
per minute) | Temperature (°F.) | |--------------------------------------|--|--|---|----------------------|-------------------------------|----------------------------| | 2478
2479
2480
2481
2482 | Driven observation well—Con. 7-5 | SE¼NE¼ sec. 11
NE¼NE¼ sec. 11
SW¼NE¼ sec. 11
do
NE¼NE¼ sec. 11 | Aug. 23, 1943
Aug. 4, 1943
Oct. 21, 1943
Aug. 23, 1943
Aug. 26, 1943 | | 12
2
8
6
5 | 67
70
65
66
64 | | 2483
2484
2485
2486
2487 | 7-10 | NW4NE4 sec. 11
NE4NE4 sec. 11
NW4NE4 sec. 11
SW4NE4 sec. 11
dodo | do
do
Oct. 11,1943
do | | 7
8
8
1
1.5 | 66
67
66
70
66 | | 2488
2489
2490
2491
2492 | 7-15 | NW¼NE¼ sec. 11do | Aug. 23, 1943
Aug. 26, 1943
Aug. 25, 1943
Aug. 23, 1943
Aug. 25, 1943 | | 2
8
8
.1 | 66
65
73
64 | | 2493
2494
2495
2496
2497 | 7-21 | NW¼NE¼ sec. 11
SE¼NW¼ sec. 11
NE¼NW¼ sec. 11
do
SE¼NW¼ sec. 11 | Aug. 26, 1943
Aug. 25, 1943
Oct. 9, 1943
Oct. 5, 1943
Aug. 25, 1943 | | 2
6
8
8 | 67
66
64
62
66 | | 2498
2499
2500
2501
2502 | 7-27 | NE¼NW¼ sec. 11
do
NW¼NW¼ sec. 11
dodo | Aug. 26, 1943
Oct. 11, 1943
Aug. 25, 1943
dodo | | 6
8
2
12
4 | 67
63
66
63
64 | | 2503
2504
2505
2506
2507 | 7-46 | SW¼NE¼ sec. 11dodododo | Aug. 23, 1943
Jan. 5, 1944
Feb. 28, 1944
May 2, 1944
July 11, 1944 | | 12
10
15
8
8 | 65
64
64
63
64 | | 2508
2509
2510
2511
2512 | 7-46 | do
do
NE¼NE¼ sec. 11
do
NW¼NE¼ sec. 11 | Aug. 30, 1944
Oct. 30, 1944
Aug. 11, 1943
do | | 10
8
3
2
10 | 65
65
67
67
64 | | 2513
2514
2515
2516
2517 | 7-62 | NE¼SE¼ sec. 11
SE¼SW¼ sec. 11
NW¼SE¼ sec. 11
SE¼NW¼ sec. 11
NW¼SW¼ sec. 11 | Aug. 24, 1943
Aug. 23, 1943
Oct. 11, 1943
Aug. 23, 1943 | | 9
10
1
12
12 | 67
66
67
64
67 | | 2518
2519
2520
2521
2522 | 7-67
USGS 279
USGS 280
6-2
6-3 | SW1/NW1/4 sec. 11
SW1/4 SW1/4 sec. 12
NE1/NE1/4 sec. 12
SE1/4 SE1/4 sec. 12
do | Nov. 19, 1943
Aug. 13, 1940
Aug. 5, 1943
Aug. 25, 1943 | 17
21 | 6
6
8 | 64
66
64 | | 2523
2524
2525
2526
2527 | 6-4 | dodo | Aug. 4, 1943
Aug. 21, 1943
Aug. 4, 1943
Oct. 4, 1943
Aug. 4, 1943 | | 10
8
8
3 | 64

64
69 | | 2528
2529
2530
2531
2532 | 6-10
6-11 | NE¼SE¼ sec.
12
do | Aug. 21, 1943
Aug. 2, 1943
do
Oct. 27, 1943
Jan. 4, 1944 | | 8
2
1
1
.5 | 65
68
64
60 | | 2533
2534
2535
2536
2537 | 6-12 | do
SW¼SE¼ sec. 12
do

NW¼SE¼ sec. 12
do | Feb. 29, 1944
Aug. 5, 1943
Aug. 25, 1943
Aug. 21, 1943
Aug. 3, 1943 | | . 2
8
8 | 58
67 | | Specific conduct-
ance (K×10° at
25 °C.) |)a) | | Sodium and potassium (Na+K) | Bicarbonate
(HCO ₃) | 7 | (f) | E | 03) |)3) | Disso
soli | lve d
ds | Total hardness
as CaCO ₃ | Percent sodium | | |--|-------------------|-------------------|-----------------------------|------------------------------------|---------------|---------------------------------|--------------|---------------|--------------|-------------------------|-----------------------|--|----------------|--------------------------------------| | SA. | Calcium (Ca) | Magnesium
(Mg) | n an
N | po
ICO | Sulfate (SO4) | Ohloride (Cl) | Fluoride (F) | Nitrate (NO3) | Borate (BO3) | n n | S & | acc | t 800 | Analysis No. | | ecifi
as °C | defu | Sene
(M | diun | lea1 | Ifate | lori | nori | trat | rate | Parts per
million | Tons per
acre-fööt | tal lass C | rcen | alys | | ds. | రొ | M | Sotas | Ē. | Su | 5 | 臣 | Z | ğ | Pa u | Ę g | T ₀ | Pe | Ar | | | | , | - | | | | | | | | | _ | | | | 360
363
268
296
457 | 134 | 39 | 653 | 542
678 | 392 | 810
670 | 2. 2 | 1.0 | 8.0 | 2, 225 | 3.03 | 495 | 74 | 2478
2479 | | 268
296 | | | | | | 545
610 | | | | | | | | 2480
2481
2482 | | | | | | | | 915 | | | | | | | | | | 413
456
460
275
276 | | | | | | 800
905 | | | | | | | | 2483
2484
2485
2486
2487 | | 275 | | | | | | | | | | | | | | 2485
2486 | | | | | | | | 560 | | | | | | - | | 1 | | 276
523
414 | | | | | | 555
1,080
760 | | | | | - | | | 2488
2489
2490
2491 | | 414 | | | | 734 | | 760 | | | | | | | | 2490 | | 289
303 | | | | | | 615 | | | | | | | | 2491
2492 | | 1 | | | | | | l | | | | | | | | 1 | | 498
286
274
284
292 | | | | | | 1,100
580 | | | | | | | | 2493
2494 | | 274 | | | | | | 565 | | | | | | | | 2495 | | 292 | | | | | | 565
570
575 | | | | | | | | 2496
2497 | | | | | | 440 | | | | | | | | | | l . | | 359
373
318
309
362 | | | | | | 770
815 | | | | | | | | 2498
2499
2500 | | 318 | | | | - - | | 660
610
755 | | | | | | | | 2500
2501 | | 362 | | | | | | 755 | | | | | | | | 2501
2502 | | 268
249
216
235
263 | | | | | - | 520 | | | | | | | | 2503 | | 249 | 135 | 36 | 305 | 472 | 173 | 520
490
400 | .7 | 20 | .5 | 1,300 | 1.77 | 485 | 58 | 2504 | | 235 | 100 | | 300 | | | 450
520 | | | | 1,000 | 1. // | 400 | | 2503
2504
2505
2506
2507 | | 1 | | | | | | 520 | | | | | | | | 2507 | | 275
263
795
737
674 | 173 | 45 | 361 | 454 | 219 | 550
520 | .9 | 29 | 7.0 | 1,600 | 2.18 | 616 | 56 | 2508
2509 | | 795 | 190 | 57 | 1, 569 | 688 | 1,024 | 1,750 | | 26 | | 4, 950 | 6.73 | 708 | 83 | 2510 | | 737
674 | | | | 882 | | 1,560
1,400 | | | | | | | | 2511
2512 | | | | | | | | | | | | | | | | ! | | 253
217
264
276
241 | | | | | | 460
370
520
530
390 | | | | | | | | 2513
2514 | | 264 | | | | | | 520 | | | | | | | | 2515
2516
2517 | | 241 | | | | 562 | | 390 | | | | | | | | 2517 | | 316 | | | | | | 615
400 | | | | | | | | 2518 | | 223 | 132 | 34
52
28 | 322
1,093 | 474
760 | 193
654 | 1 126 | .7 | 17 | 7.0 | 1,330 | 1.81
4.65 | 470 | 60
82 | 2519 | | 316
223
550
209
431 | 132
121
102 | 28 | 326 | 486 | 160 | 1, 126
345 | | 32 | | 1,330
3,420
1,232 | 1.68 | 470
516
370 | 66 | 2518
2519
2520
2521
2522 | | | | | | | | 865 | | | | | | | | 2522 | | 329
462
455
214
382 | | | | 742 | | 560
870
885
365
710 | | | | | | | | 2523
2524 | | 462
455 | | | | 850 | | 885 | | | | | | | | 2524
2525 | | 214 | | | | 784 | | 365 | | | | | | | | 2525
2526
2527 | | 1 | | | | 104 | | | | | | | | | | 1 | | 264
331
400 | 146 | 38 | 567 | 708 | 326 | 425
585
795 | 2.6 | 2.0 | 3.5 | 2,015 | 2. 74 | 520 | 70 | 2528
2529
2530 | | 400 | 167 | 52 | 730 | 802 | 457 | 795 | 4. 2 | 21 | 18 | 2, 580 | 3. 51 | 631 | 72 | 2530 | | 401
395 | 107 | | | | | 750
740 | 4. 2 | | 10 | 2,000 | 0. 01 | | | 2531
2532 | | 1 | | | | 478 | | 770 | | | | | | | | l | | 369
211
355 | | | | | | 770
350
620
650
960 | | | | | | | | 2533
2534
2535 | | 355
354 | | | | 828 | | 620 | | | | | | | | 2535
2536
2537 | | 354
461 | · | | | 642 | | 960 | | | | | · | | · | 2537 | | | I | 1 | I | i | | | |--------------------------------------|-----------------------------------|--|---|----------------------|---------------------------------|----------------------------| | Analysis No. | Source | Location | Date sampled | Depth of well (feet) | Yield (gallons
per minute) | Temperature
(°F.) | | 2538
2539
2540
2541
2542 | Driven observation well—Con. 6-17 | SW¼SE¼ sec. 12do
NW¼SE½ sec. 12do | Aug. 5, 1943
do
Oct. 12, 1943
Aug. 4, 1943
Aug. 3, 1943 | | 1
6
8
4 | 73
67
69
64
67 | | 2543
2544
2545
2546
2547 | 6-21 | do | Oct. 4, 1943
Aug. 11, 1943
do
Aug. 3, 1943 | | 8
12
14
12 | 64
66
67
65
65 | | 2548
2549
2550
2551
2552 | 6-27 | dodo | Aug. 11, 1943
Oct. 4, 1943
Aug. 3, 1943
Aug. 21, 1943 | | 6
15
3
6 | 63
67
66 | | 2553
2554
2555
2556
2557 | 6-32 | dodo
SE¼SW¼ sec. 12do
NE¼SW¼ sec. 12
do | Aug. 4, 1943
Aug. 11, 1943
do
Aug. 3, 1943 | | 9
3
2
11
12 | 66
69
68
64
65 | | 2558
2559
2560
2561
2562 | 6-37 | SE¼NW¼ sec. 12dodo
NW¼SW¼ sec. 12do | Aug. 21, 1943
do
Aug. 4, 1943
Aug. 11, 1943
do | | 8
2
6
12
1 | 65
68
69 | | 2563
2564
2565
2566
2567 | 6-42 | do
SW¼NW¼ sec. 12
SE¼NW¼ sec. 12
NW¼SW¼ sec. 12
dodo | Aug. 3, 1943
Aug. 21, 1943
Aug. 4, 1943
Aug. 11, 1943 | | 10
8
9
. 5 | 64
66
70
67 | | 2568
2569
2570
2571
2572 | 6-47 | SW1/NW1/4 sec. 12do
NW1/NW1/4 sec. 12
SW1/NW1/4 sec. 12do | Aug. 21, 1943
Aug. 4, 1943
 | | 8
3
8
1. 5
2 | 67
65
71
65 | | 2573
2574
2575
2576
2577 | 6-53 | NW\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | Aug. 24, 1943
Feb. 9, 1944
Aug. 24, 1943
Oct. 27, 1943 | | 4
12
9
10 | 67
65
64
65 | | 2578
2579
2580
2581
2582 | 6-57 | do
do
dodo | Jan. 4, 1944
Feb. 9, 1944
Feb. 29, 1944
May 2, 1944
July 10, 1944 | | 10
6
6
5 | 65
64
64
64
65 | | 2583
2584
2585
2586
2587 | 6-57 | do | Oct. 27, 1944
Aug. 24, 1943
dodododo | | 4
8
2
5
10 | 65
64
66
66
64 | | 2588
2589
2590
2591
2592 | 6-63 | do
do
SW¼SW¼ sec. 12
SW¼NE¼ sec. 13
do | Feb. 9, 1944
Aug. 29, 1944
Sept. 29, 1943
Mar. 28, 1940
Feb. 26, 1943 | 25. 4
25. 4 | 8 6 | 64
63
63 | | 637
645 1,360
1,360 588
478
209
171 1,160
905
385 1,160
905
385 1,160
10
3,000 1,00
4,08 455
82 | | | | | | | | | | | | | | | | |---|------------------------------------|----------|---------------|-----------------------|------------------|-------------|------------|---------|---------------|----------------------|------------|---------------|-------------------|-----------|------------------------------| |
195 | fic conduct-
b (KX10° at
C.) | лщ (Св) | iesium
fg) | m and po-
m (Na+K) | Thomate
HCO3) | (SO4) | ide (Cl) | ide (F) | te (NO3) | e (BO ₂) | sol | ids | hardness
CaCOs | nt sodium | Analysis No. | | 433 | Speci
ano
25° | Calci | Magn | Sodiu | Bics | Sulfat | Chlor | Fluor | Nitra | Borat | Parts | Tons
acre- | Total | Perce | Anal | | 433 | 195 | | | | | | 380 | |
 | | | | ļ |
 | 2538
2539
2540 | | 433 | 226 | | | | | | 410 | | | | | | | | 2540 | | 433 | 498 | | | | | | 1,060 | | | | | | | | 2541
2542 | | 2009 | | | | | | | i | | | | | | | | 1 | | 2009 | 433
218 | | - | | 816 | | 840
380 | | | | - - | | | | 2543
2544 | | 458 | 209 | | | | | | I | | | | | | | | 2545 | | 458 | 214
259 | 102 | 26 | 440 | 484 | 222 | 365
495 | | 1.0 | | 1.519 | 2.06 | 362 | 73 | 2546
2547 | | 482 | | -0- | | | l | | 1 | | 1.0 | | 2,010 | | | | 1 | | 482 | 266 | | | | 914 | | 525 | | | | | | | | 2548
2549 | | 482 | 265 | | | | | | 520 | | | | | | | | 2550 | | 482 | 458 | | | | | | 915 | | | | | | | | 2549
2550
2551
2552 | | 510 480 1,055 1,0 | | | | | 1 | | | | | | | | | | 1 | | 510 480 1,055 1,0 | 206 | | | | | | 365 | | | | | | | | 2553
2554
2555 | | 510 480 1,055 1,0 | 209
272 | | | | | | | | | | | | | | 2555
2556 | | 510 480 1,055 1,0 | 383 | | | | | | 780 | | | | | | | | 2557 | | 430 | | | | | | | 1 055 | | | | | | | | 2558 | | 430 | 480 | | | | | | 970 | | | | | | | | 2558
2559 | | 430 | 461
208 | | | | | | 855 | | | | | | | | 2560
2561 | | 430 | 249 | | | | | | 525 | | | | | | | | 2561
2562 | | 530 | | ļ | | | 600 |] | 805 | | ļ | | | |] | | 2563 | | 530 | 489 | | | | | | 970 | | | | | | | | 2563
2564 | | 530 | 468
208 | | | | - - | | 875
390 | | | | | | | | 2565
2566
2567 | | 441 506 818 845 940 940 940 10 940 940 940 1,910 1 | 282 | | | | | | 570 | | | | | | | | 2567 | | 441 506 818 845 940 940 940 10 940 940 940 1,910 1 | 530 | | | | 774 | | 1.160 | | | | | | | | 2568 | | 441 506 818 845 940 940 940 10 940 940 940 1,910 1 | 439 | 175 | | 1 005 | | | 845 | | | | 2 270 | 4 50 | | | 2568
2569
2570 | | 441 506 818 845 940 940 940 10 940 940 940 1,910 1 | 287 | 170 | | 1,000 | 450 | | 620 | 4. / | 42 | 10 | 0, 370 | 4. 00 | 054 | | 2571 | | 840 898 1,900 16 859 1,920 16 1,920 863 1,950 1,950 1,950 775 1,950 1,500 1,500 1,740 885 1,350 1,350 647 1,350 1,350 1,350 588 1,360 1,360 1,360 588 1,360 1,360 1,360 588 1,360 1,360 1,360 598 1,360 1,360 1,360 598 1,360 1,360 1,360 598 1,360 1,360 1,360 598 1,360 1,360 1,360 598 1,360 1,360 1,360 598 1,360 1,360 1,360 598 1,360 1,360 1,360 598 1,360 1,360 1,360 598 1,360 1,360 1,360 598 1,360 1,360 1,360 598 1,360 1,360 1,360 590 1,360 1,360 1,360 590 1,360 1,360 1,360 590 1,360 1,360 1,360 <tr< td=""><td></td><td> </td><td></td><td></td><td></td><td></td><td>980</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>2572</td></tr<> | | | | | | | 980 | | | | | | | | 2572 | | 840 898 1,900 16 1,920 859 1,920 1,920 16 1,920 863 1,950 1,950 1,950 1,950 775 1,500 1,740 1,740 1,740 885 192 59 1,552 722 1,054 1,690 2,4 21 25 4,930 6,70 722 82 645 1,360 | 441 | | | | | | 845 | | | | | | | | 2573
2574 | | 840 898 1,900 16 1,920 859 1,920 1,920 16 1,920 863 1,950 1,950 1,950 1,950 775 1,500 1,740 1,740 1,740 885 192 59 1,552 722 1,054 1,690 2,4 21 25 4,930 6,70 722 82 645 1,360 | 506
470 | | | | 818 | | 940 | | | 10 | | | | | 2574 | | 840 898 1,900 16 1,920 859 1,920 1,920 16 1,920 863 1,950 1,950 1,950 1,950 775 1,500 1,740 1,740 1,740 885 192 59 1,552 722 1,054 1,690 2,4 21 25 4,930 6,70 722 82 645 1,360 | 859 | | | | l | | 1, 910 | | | | | | | | 2575
2576
2577 | | 775 1,740 476 885 788 192 59 1,552 722 1,054 1,990 2,4 21 25 4,930 6.70 722 82 645 1,360 1,360 1,360 1,360 1,160 209 1,18 39 964 738 580 385 | | 180 | 78 | 1,720 | 842 | 1, 160 | 1,810 | 6.5 | 38 | 16 | 5, 410 | 7.36 | 770 | 83 | 2577 | | 775 1,740 476 885 788 192 59 1,552 722 1,054 1,990 2,4 21 25 4,930 6.70 722 82 645 1,360 1,360 1,360 1,360 1,160 209 1,18 39 964 738 580 385 | 840 | | | | | | 1,900 | | | | | | | ļ | 2578 | | 775 1,740 476 885 788 192 59 1,552 722 1,054 1,990 2,4 21 25 4,930 6.70 722 82 645 1,360 1,360
1,360 1,360 1,160 209 1,18 39 964 738 580 385 | 859 | | | | 894 | | 1.920 | | | 10 | | | | | 2579
2580 | | 775 1,740 476 885 788 192 59 1,552 722 1,054 1,990 2,4 21 25 4,930 6.70 722 82 645 1,360 1,360 1,360 1,360 1,160 209 1,18 39 964 738 580 385 | 863 | | | , | | | 1,950 | | | | | | | | 2581
2582 | | 637 | | | | | | | | i | | | | | | | 1 | | 637 | 775
476 | | | | | | 1,740 | | | | | | | | 2583
2584
2585 | | 637 | 768 | 192 | 59 | 1, 552 | 722 | 1, 054 | 1,690 | 2.4 | 21 | 25 | 4, 930 | 6. 70 | 722 | 82 | 2585 | | 588 478 118 39 954 738 580 905 5.7 36 10 3,000 4.08 455 82 209 171 248 75 335 .2 27 158 158 | 637
645 | | | | | - - | 1,350 | | - | - | | ļ | | | 2586
2587 | | 171 248 75 335 .2 27 158 | | | | | | | Γ. | | | | | | | | ľ | | 171 248 75 335 .2 27 158 | 588
478 | 118 | 39 | 954 | 850
738 | 580 | 1,160 | 5.7 | 36 | 10 | 3, 900 | 4.08 | 455 | 82 | 2588
2589 | | | 209 | | | | | | 385 | | | | | | | | 2589
2590 | | 1 158 64 18 279 464 110 220 1.1 14 1.4 926 1.26 234 72 | | | | | 248 | | 1 | .2 | 27 | | | | ſ | | 2591 | | | 158 | 64 | 18 | 270 | 464 | 110 | 220 | 1.1 | 14 | 1.4 | 926 | 1.26 | 234 | 72 | 2592 | | Analysis No. | Source | Location . | Date sampled | Depth of well (feet) | Yield (gallons
per minute) | Temperature (°F.) | |----------------------|--|--|---|----------------------------|-------------------------------|-------------------| | 2 593 | Guy Anderson irrigation well,
USGS 284. | SE¼SE¼ sec. 13 | June 20, 1940 | | 765 | | | 2594
2595
2596 | do | do
do
SW¼SE¼ sec, 13 | Apr. 29, 1943 | 59 | 790 | 65
65
65 | | 2597 | Seep from terrace gravel | SW14SW14 sec. 13 | May 19, 1943
Nov. 29, 1940 | | 1 | | | 2598
2599 | W. J. Preston domestic well | NW¼SW¼ sec. 13 | Mar. 28, 1940
Feb. 26, 1943 | 48. 25
48. 25 | | 65 | | 2600
2601 | do
Mary Mack flowing welldo | do
NW¼NE¼ sec. 13
do | Feb. 26, 1943
Oct. 30, 1940
Oct. 27, 1943
Jan. 5, 1944 | 3, 767
3, 767
3, 767 | 1, 550 | 138 | | 2602 | do, | do | | i | | | | 2603
2604 | Driven observation well, 6-1 | do
NE¼NE¼ sec. 13 | June 21, 1944
Aug. 5, 1943
Aug. 4, 1943 | 3, 767 | 1. 5 | | | 2605
2606 | 6-23 | do
NW¼NE¼ sec. 13
SE¼NE¼ sec. 13 | Aug. 11,1943 | | 10
13 | 65
67 | | 2607 | 6-66 | | Aug. 2, 1943 | | 2 | 66 | | 2608
2609 | 6-67 | NW4NE4 sec. 13
NW4NE4 sec. 13 | Aug. 24, 1943
Aug. 5, 1943
Aug. 24, 1943 | | 10
10 | 66
65 | | 2610
2611
2612 | 6-69 | SW4NE4 sec. 13
NW4NE4 sec. 13
SW4NE4 sec. 13
NE4NW4 sec. 13 | Aug. 24, 1943 | | 10
12 | 67
68
65 | | 2613 | | do | do | 25 | * | 65 | | 2614
2615 | H. L. Smith domestic well
Driven observation well, 6-73 | NE¼NE¼ sec. 14
NW¼NE¼ sec. 14
NE¼NE¼ sec. 14 | Mar. 1, 1943
Mar. 11, 1943
Aug. 23, 1943
Oct. 29, 1943 | 36 | 10 | 65 | | 2616
2617 | do | do | Oct. 29, 1943
Jan. 5, 1944 | | 5
1. 5 | 66
64 | | 2618 | do | ľ | Fob 98 1044 | | 1 | 63 | | 2619
2620 | do | ld0 | May 3, 1944
July 11, 1944 | | 1
1. 5 | 63
65 | | 2621
2622 | do | do | May 3, 1944
July 11, 1944
Aug. 30, 1944
Oct. 30, 1944 | | 1
1 | 66
66 | | 2623 | Spring in Matthews Wash | NW14NE14 sec. 16. | May 26, 1941
Aug. 23, 1943 | | 10 | 71 | | 2624
2625 | Driven observation well, 7-18
Union test well
Mattice brothers irrigation well | NW14NE14 sec. 16
SW14NE14 sec. 11
NE14NE14 sec. 23
SE14NE14 sec. 23 | Feb. 26, 1943 | | 9 | 66 | | 2626
2627 | Mattice prothers irrigation well | SE¼NE¼ sec. 23 | Aug. 29, 1941
May 15, 1943 | 64
64 | | 64
69 | | 2628
2629 | Joe Rogers stock well Joe Rogers irrigation well | NE¼NW¼ sec. 25_
NW¼NE¼ sec. 35
do | Mar. 28, 1940 | 22 | | 67
61 | | 2630 | do | do | Aug. 12, 1941 | | | 64 | | 2631 | Ernest Long flowing well | T. 7 S., R. 24 E.: | Dec. 21, 1940 | 150 | 3 | 72 | | 2632
2633 | Ernest Long flowing well Flowing well at Durham Ranch Anton Frederickson flowing well, | T. 7 S., R. 24 E.:
SW1/NW1/ sec. 8
NE1/SW1/ sec. 8
NE1/NE1/ sec. 8 | Dec. 21, 1940
Dec. 10, 1940
Feb. 28, 1941 | 177
436 | 3
7
1 | 72
71 | | 2634 | USGS 495.
USGS 496 | | | | 1 | | | 2635 | Jim Smith flowing well | do
SW¼SW¼ sec. 10 | Dec. 14, 1940 | 190 | 3 | | | 2636
2637 | Spring flowing into Ash Creek | SW14SE14 sec. 13 | Feb. 13, 1940
Oct. 31, 1940
May 20, 1944
Feb. 13, 1940
Mar. 7, 1941 | | 27
20 | 85 | | 2638
2639 | Unused well flowing Domestic well | do | May 20, 1944
Feb. 13, 1940 | | 1.5 | | | 2640 | Domestic well | SW1/4NE1/4 sec. 26 | Mar. 7, 1941 | 16 | | 61 | | 2641 | Spring in fault zone, USGS 67 | T 4 S., R. 23 E.:
NW1/4NW1/4 sec. 7
dodo | Feb. 27, 1942 | | 7
.3 | 70 | | 2642
2643
2644 | USGS 68. Driven observation well, USGS 71. USGS 72. | SE½SW½ sec. 7 | June 8, 1940
Nov. 11, 1943
June 7, 1940 | 21
21 | | 64
68 | | 2645 | USGS 72 | do | June 7, 1940 | 11 | | .,00 | | 164 | | - | | | | | | | | | | | | | | |---|-------------------------------|--------------|------|-----------------|------------|------------|------------|----------|-------------|------------|---------------|--------------|------------------------|------|--------------| | 190 | nduct-
<10 ⁵ at | (a) | я | nd po-
fa+K) | nate | 24) | Ct) | <u>E</u> | (03) | 03) | Disso
soli | olved
ids | ness
J ₃ | dium | 70°. | | 190 | 8₹. | 5 | I ∄_ | 8€ | ಕ್ಷ | <u>s</u> | 0 . | 0 | Z | ě | H | F #3 | 20 | & | 24 | | 190 | Se Bo | an. | Ag. | 異質 | E E | 22 | ğ | ğ | Ę. | <u>s</u> . | 9.0 | 8.5 | ජූදු | ļ ţ | ysi | | 190 | 25,00 | lci | 2000 | £iğ. | ဦ | # <u>#</u> | 음 | 🖺 | tre | g | tie | 1 2 5 | as as | 1 2 | " | | 164 | S | ပိ | ¥. | . S. š. | PA. | B. | 5 | E | Z | ĕ | Ã, | E g | Ĭ | Ä | 4 | | 151 | 190 | | | | 444 | 140 | 350 - | | | | | | 270 | | 2593 | | 00.4 | 151 | | | | | | 270
320 | | | | | | | | 2594
2595 | | 214 | 90.4 | | | | | 4 016 | 110 | | - - | == | | 55-3 | 9 901 | | 2596
2597 | | 216 | | 440 | 304 | ə, uəu | | ′ | | | | | 10, 290 | 22. 1 | ٠. | 82 | ŀ | | 582 72 9.2 1, 210 98 416 1, 640 - 7.5 * 3, 400 4.62 218 92 22 548 385 | 214
216 | | | | 454
532 | | 395 | | 26 | | | | 345 | | 2598
2599 | | 588 — 1,690 — 22 216 — 385 — 22 207 — 385 — 22 201 — 305 — 22 1199 — 360 — 22 205 — 360 — 22 205 — 360 — 22 151 — 280 — 22 151 — 378 285 — 22 213 29 15 440 518 162 330 1.5 33 5.0 1,266 1.72 134 88 22 188 102 36 203 378 144 255 3 30 5.0 1,266 1.72 134 88 22 26 144 — — 260 — — 22 22 22 22 22 22 22 | 592 | | | 1, 220 | 101 | 416 | 1,660 | 6.0 | | 7.0 | 3, 530 | 4: 80 | 220 | 92 | 2599
2600 | | 548 1,630 385 385 385 385 320 220
220 </td <td>582</td> <td>72</td> <td>9. 2</td> <td>1, 210</td> <td>. 98</td> <td>416</td> <td>1,640</td> <td>5.8</td> <td>0</td> <td>7. 5</td> <td>3, 400</td> <td>4.62</td> <td>218</td> <td>92</td> <td>2601
2602</td> | 582 | 72 | 9. 2 | 1, 210 | . 98 | 416 | 1,640 | 5.8 | 0 | 7. 5 | 3, 400 | 4.62 | 218 | 92 | 2601
2602 | | 216 | | | | | | | - | | | | | | | | 2603 | | 207 | 216 | | | | | | 385 | | | | | | | | 2604 | | 199 | 207 | | | | | | 340 | | | | | | | | 2605 | | 199 | 201
107 | | | | , | | 330 | | | | | | | | 2606
2607 | | 215 174 280 360 280 220 220 220 230 | | | | | | | | | | | | | | | | | 205 | 199
215 | | | | | | 320
360 | | | | | | | | 2608
2609 | | 161 | 174 | | | | | | 280 | | | | | | | | 2609
2610 | | 168 213 29 15 440 518 162 330 1.5 33 5.0 1,266 1.72 134 88 22 168 102 36 203 378 144 255 .3 30 5.0 956 1.30 402 52 22 165 286 | 205
151 | | | | | | 360 | | | | | | | | 2611
2612 | | 213 | | | | | | | | | | | | | | | | | 187 168 102 36 203 378 144 255 .3 30 5.0 956 1.30 402 52 26 144 | 168 | | | 440 | 378 | 189 | 265 | | | | 1 266 | 1 79 | 134 | | 2613
2614 | | 166 | 187 | | | | | | 300 | | | | | | | | 2615 | | 144 | 158 | 102 | 36 | 203 | 378 | 144 | 255 | .3 | 30 | 5.0 | 956 | 1.30 | 402 | 52 | 2616
2617 | | 165 ———————————————————————————————————— | | | | | | | l | | | | | | | | | | 173 | 144
165 | | | | | | 220 | | | | | | | | 2618
2619 | | 163 32 25 731 688 360 580 2.9 8.6 2,087 2.82 183 90 28 284 32 25 731 688 360 580 2.9 8.6 2,087 2.82 183 90 28 224 203 100 32 309 488 128 360 1.2 12 1,183 1.61 381 64 22 280 43 237 24 9.0 20 20 172 172 26 33.6 42 8.3 18 181 19 7.0 2 2 184 .25 139 22 26 37.4 6.0 2.2 75 (4) 45 36 4.6 214 29 24 87 22 38 51.0 2.5 1.3 119 207 29 44 3.4 301 41 12 96 26 | 157 | | | | | | 245 | | | | | | | | 2619
2620 | | 346 32 25 731 688 360 580 2.9 8.6 2,087 2.82 183 90 26 28 28 28 183 90 26 28 28 28 183 90 26 28 28 183 90 28 28 183 90 28 28 183 18 18 128 360 1.2 12 1,183 1.61 381 64 26 26 26 26 26 26 26 26 26 26 26 26 26 27 27 28 26 26 27 27 28 26 26 27 27 28 | 173 | | | | | | 275 | | | | | | | | 2621
2622 | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | l | | | | | | | | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 288 | 32 | 25 | 731 | | 360 | 580
585 | 2. 9 | 8.6 | | 2, 087 | 2.82 | 183 | 90 | 2623
2624 | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 254 | | | | 574 | | 455 | | | | | | | | 2625
2626 | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 179 | 100 | 32 | | 400 | 128 | 320 | 1. 2 | 12 | | 1, 100 | 1. 01 | 901 | | 2627 | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 280 | | | | 424 | 200 | 642 | 1.9 | 20 | | | | 810 | | 2628 | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 43 | | | | 237 | 24 | 9.0 | | | | | | 172 | | 2629
2630 | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 33.0 | 42 | 8.0 | 10 | 191 | 19 | .'.0 | .2 | | | 104 | . 20 | 199 | 44 | 2000 | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 37. 4 | 6.0 | 2.2 | 75 | (3) | 45 | 36 | 4.6 | | | 214 | . 29 | 24 | 87 | 2631 | | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | 38. 6 | 3.0 | 1.3 | 71 | 107 | 36 | 24 | 2.9 | | | 191 | . 26 | 13 | 92 | 2632 | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | . 2. 5 | 1.3 | 119 | 207 | .29 | 44 | 3.4 | | | 301 | | 12 | 96 | 2633 | | $ \begin{bmatrix} 500 \\ 490 \\ 24 \\ 6.6 \\ 1,047 \\ 79 \\ 588 \\ 1,180 \\ 85 \\ 1,035 \\ 85 \\ 1,035 \\ 1,035 \\ 66 \\ 1,230 \\ 7.8 \\ .5 \\ 12 \\ .5 \\ .6 \\ \\ .5 \\ 12 \\ .2,940 \\ 4.00 \\ 124 \\ .95 \\ .26 \\ .00 \\ \\ .280 \\ 3.93 \\ 87 \\ 96 \\ 124 \\ .95 \\ .26 \\ \\ .280 \\ .103 \\ .103 \\ .29 \\ .20 \\$ | 42.0 | | | 96 | 177 | 26 | | 3.0 | | | 251 | .34 | 17 | | 2634
2635 | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | 0. 5 | 4.4 | 91 | | | | | | | 220 | . 00 | | 07 | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 500
400 | 94 | a | 1 047 | 156 | 500 | 1,200 | 6.9 | 2.5 | | 2 800 | 3 09 | 60
87 | QG | 2636
2637 | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 495 | 40 | 5.9 | 1, 050 | 66 | 569 | 1, 230 | 7.8 | .5 | 12 | 2, 940 | 4.00 | 124 | 95 | 2638
2639 | | 539 185 29 969 144 503 1,450 | 440 | 12 | | | 125 | 850 | | | | | | 10 | 60 | 44 | 2639
2640 | | 260 105 29 411 324 233 540 2.0 1,480 2.01 381 70 25
 311 152 44 470 263 327 725 1.5 .0 15 1,850 2.52 560 65 26 | 11.0 | | 1. (| 11 | ** | 41 | " | .0 | | | . " | . 10 | 01 | *** | 2010 | | 260 105 29 411 324 233 540 2.0 1,480 2.01 381 70 25
 311 152 44 470 263 327 725 1.5 .0 15 1,850 2.52 560 65 26 | 539 | 185 | 29 | 969 | 144 | 503 | 1, 450 | | | | 3, 210 | . 73 | 580 | 78 | 2641 | | | 912 | 376 | 55 | 1,622 | 188 | 835 | 2,600 | | | | 5, 580 | 7.59 | 1, 164 | 75 | 2642
2643 | | | 311 | 152 | 44 | 470 | 263 | 327 | 725 | 1.5 | .0 | 15 | 1, 850 | 2. 52 | 560 | 65 | 2644 | | | | | | | | | 164 | | | | | | اــــا | | 2645 | ³ Contained 45 parts per million of carbonate (CO₁) and 1.1 parts per million of hydroxide (OH). | | _ | | | | | | |--------------------------------------|--|---|---|---|-------------------------------|----------------------------| | Analysis No. | Source | Location , | Date sampled | Depth of well (feet) | Yield (gallons
per minute) | Temperature (°F.) | | 2646
2647
2648
2649
2650 | Driven observation well—Con. US GS 72. US GS 73. Seepage in Gila River channel Driven observation well, 21-8do | SE¼SW¼ sec. 7do.
SW¼SW¼ sec. 7
SW¼SE¼ sec. 7do. | Nov. 5, 1943
June 7, 1940
Sept. 22, 1941
July 27, 1943
Sept. 4, 1943 | 11
20 | 2
5
8 | 70

72 | | 2651
2652
2653
2654
2655 | 21-11
21-11
21-11
21-11
21-11 | do
do
do | Apr. 25, 1944
Apr. 5, 1943
Sept. 2, 1943
Oct. 28, 1943
Jan. 6, 1944 | 18. 4
18. 4
18. 4
18. 4 | 3
10
8
15
10 | 65
 | | 2656
2657
2658
2659
2660 | 21-11
21-11
21-11
21-11
21-11 | do
dodo | Mar. 1, 1944
Apr. 25,
1944
July 14, 1944
Sept. 1, 1944
Oct. 31, 1944 | 18. 4
18. 4
18. 4
18. 4
18. 4 | 8
8
10
8
8 | 62
62
66
70
70 | | 2661
2662
2663
2664
2665 | 21-12
21-12
21-12
21-13
21-13 | do
do
SE¼SW¼ sec. 7
do | July 27, 1943
Sept. 4, 1943
Apr. 25, 1944
Mar. 31, 1943
Aug. 5, 1943 | 18.3 | 8
3
. 2
2 | 73
68
71 | | 2666
2667
2668
2669
2670 | 21-13 | do
do
do
sw¼sE¼ sec. 7 | Apr. 24, 1944
July 27, 1943
Sept. 4, 1943
Apr. 25, 1944
Apr. 5, 1943 | 18. 3 | 1
10
8
4
1 | 68
73
62 | | 2671
2672
2673
2674
2675 | 21-15 | dododo | Sept. 2, 1943
July 28, 1943
Apr. 25, 1944
July 30, 1943
Apr. 24, 1944 | 18.4 | 5
4
3
8 | 76
67
59
67
65 | | 2676
2677
2678
2679
2680 | 21-22
21-24
21-24
21-24
21-29 | do | Apr. 1, 1943
 | 13. 7
18. 7
18. 7
18. 7 | 2
10
8
6
8 | 68
65
67 | | 2681
2682
2683
2684
2685 | 21-29. Ed. McEuen stock welldododododododo. | dodododo | Apr. 25, 1944
Feb. 26, 1942
Jan. 6, 1944
Apr. 25, 1944
July 18, 1940 | 35. 5
35. 5
35. 5
82 | 883 | 86
87
68 | | 2686
2687
2688
2689
2690 | do | do | May 3, 1943
Sept. 22, 1941
——do.——
Mar. 18, 1943
Apr. 6, 1943 | 82
21
18.6 | 5
5 | | | 2691
2692
2693
2694
2695 | dodo | do | Sept. 3, 1943
Oct. 28, 1943
Apr. 17, 1944
Apr. 6, 1943
Sept. 2, 1943 | 18.6
18.6
18.6
18.7
18.7 | 5
. 25
. 5
10
5 | 75
74
70
75 | | 2696
2697
2698
2699
2700 | 20-22 | do | Apr. 17, 1944
Aug. 6, 1943
Apr. 17, 1944
Sept. 4, 1943
Apr. 17, 1944 | 18. 7 | 3
8
6
8
5 | 72
65
62
76
70 | ## between the mouth of Bonita Creek near Solomonsville and the Southern Pacific Railat Calva—Continued [Analyses in parts per million] Chemical character of ground waters in the Gila River Basin, Graham County, Ariz., road bridge | | · | · | | | | | |--------------------------------------|--|--|---|---|-------------------------------|----------------------------| | Analysis No. | Source | Location | Date sampled | Depth of well (feet) | Yield (gallons
per minute) | Temperature (°F.) | | 2701
2702
2703
2704
2705 | Driven observation well—Con,
20-26.
20-26.
20-26.
20-27.
20-27. | NW¼SW¼ sec. 17do | Apr. 6, 1943
Sept. 2, 1943
Apr. 17, 1944
Sept. 4, 1943
Apr. 19, 1944 | 18.5
18.5
18.5 | 1
2
4
5
2 | 75
72
65
63 | | 2706
2707
2708
2709
2710 | 20-28 | do
do
NE¼SW¼ sec. 17
do | Apr. 5, 1943
Sept. 3, 1943
Apr. 17, 1944
Apr. 6, 1943
Sept. 4, 1943 | 18. 8
18. 8
18. 8
18. 8
18. 8 | 10
8
6
. 25 | 64
60
75 | | 2711
2712
2713
2714
2715 | 20-29 | do
do
do
NW¼SE¼ sec. 17 | Apr. 17, 1944
Apr. 5, 1943
Sept. 2, 1943
Apr. 17, 1944
Apr. 25, 1944 | 18. 8
18. 5
18. 5
18. 5 | 5
10
8
5 | 68
 | | 2716
2717
2718
2719
2720 | 20-32 | SE¼SW¼ sec. 17
do
NE¼SW¼ sec. 17
do
do | Sept. 4, 1943
Apr. 19, 1944
Sept. 4, 1943
Apr. 17, 1944
Apr. 25, 1944 | | 8
4
8
4
4 | 66
64
67
62
62 | | 2721
2722
2723
2724
2725 | 20-34
20-34
20-35
20-35
20-35 | do | Sept. 4, 1943
Apr. 25, 1944
Apr. 5, 1943
Sept. 2, 1943
Apr. 25, 1944 | 18. 2
18. 2
18. 2 | 8
4
10
8
6 | 74
68
78
68 | | 2726
2727
2728
2729
2730 | 20-36.
20-36.
20-36.
20-37.
20-37 | SW¼SW¼ sec. 17
do
Oo
NW¼SW¼ sec. 17
do | Mar. 31, 1943
Sept. 3, 1943
Apr. 19, 1944
Mar. 31, 1943
Sept. 3, 1943 | 18. 5
18. 5
18. 5
18. 9
18. 9 | 8
6
8 | 62
50
65 | | 2731
2732
2733
2734
2735 | 20-37
20-38
20-39
20-39
20-40 | do
do
NE¼SW¼ sec. 17
do
SE¼NW¼ sec. 17 | Apr. 24, 1944
do | 18.9 | 5
1
4
3
8 | 64
64
66
64
76 | | 2736
2737
2738
2739
2740 | 20-40
20-41
20-42
20-42
20-42 | do | Apr. 25, 1944
Apr. 24, 1944
Mar. 31, 1943
Sept. 2, 1943
Apr. 24, 1944 | 18. 5
18. 5
18. 5 | 8
4
1
8
3 | 70
65
68
66 | | 2741
2742
2743
2744
2745 | 20-43
20-44
20-44
20-44
20-45 | doSE¼NW¼ sec. 17
do | Mar. 31, 1943
Sept. 2, 1943
Apr. 24, 1944
Apr. 5, 1943 | 19
19
19
19
13.1 | 6
1
8
5
12 | 65
63 | | 2746
2747
2748
2749
2750 | 20-45.
20-45.
20-45.
20-45.
20-45. | ďo | Sept. 2, 1943
Oct. 28, 1943
Jan. 6, 1944
Mar. 1, 1944
Apr. 25, 1944 | 13. 1
13. 1
13. 1
13. 1
13. 1 | 8
· 10
10
10
10 | 79
79
76
75
75 | | 2751
2752
2753
2754
2755 | 20-45.
20-45.
20-45.
20-46.
20-46. | do
do
NW¼8W¼ sec. 17
do | July 14, 1944
Sept. 1, 1944
Oct. 31, 1944
Mar. 31, 1943
Sept. 2, 1943 | 13. 1
13. 1
13. 1
13. 1
13. 1 | 10
12
12
13 | 79
79
78
69 | | 2756
2757
2758
2759
2760 | 20-46 | do
SW¼NW¼ sec. 17
dodo | Apr. 24, 1944
—do——
Mar. 31, 1943
Sept. 2, 1943
Nov. 2, 1943 | 13. 1
18. 4
18. 4
18. 4 | . 5
4
5
8
12 | 65
62
66
68 | between the mouth of Bonita Creek near Solomonsville and the Southern Pacific Railat Calva—Continued [Analyses in parts per million] | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | a III be | | | | | | | | | |--|--------------------------|--------|-------------|-----------------------|------------------|---------|---------------------------|--------|----------------------|--------------------|-------------------|---------------|--------------------|-----------|----------------------| | | c conduct-
(K×10° at | m (Ca) | ssium
g) | n and po-
n (Na+K) | rbonate
HCOs) | (804) | de (CI) | de (F) | e (NO ₃) | (BO ₈) | sol | ids | hardness
Jac Os | ıt sodium | sis No. | | 424 142 34 794 648 448 860 1.4 9.3 3.5 2.610 3.55 494 78 2700 | Specifi
ance
25° (| Calciu | Magne
(M | Sodiu | Bica | Sulfate | Chlori | Fluori | Nitrat | Borate | Parts p
millio | Tons pacre-fc | Total | Percen | Analy | | 424 142 34 794 648 448 860 1.4 9.3 3.5 2.610 3.55 494 78 2700 | 654
741
815 | | | | 234 | | 1,790
2,060
2,290 | | | | | | | | 2701
2702
2703 | | 672 | 424 | 142 | 34 | 794 | 646 | 448 | 1 | 1.4 | 9. 3 | 3. 5 | 2, 610 | 3. 55 | 494 | 78 | 2704
2705 | | 672 | 866 | 470 | 117 | 1, 568 | 658 | 1, 202 | 2,320
2,150 | | 1.0 | | 6,000 | 8. 16 | 1,654 | 67 | 2706
2707 | | 672 | 682 | | | | 234 | | 2,720
1,810 | | | | | | | | 2708
2709 | | Strict S | 672 | | | | | | 1, 820 | | | | | | | | 1 | | 232 | 746
711 | | | | 190 | | 2, 030
1, 930 | | | | | | | | 2712
2713 | | 607 | 611 | 308 | 82 | 914 | 191 | 446 | ı | 1.4 | .5 | 1 | 3,600 | 4.90 | 1,110 | 64 | | | 607 | 187 | 67 | 19 | 319 | 308 | 170 | 440
355 | 1.5 | 4. 5 | .5 | 1,090 | 1.48 | 245 | 74 | 2716
2717 | | 607 | 941
944 | 529 | 143 | 1, 470 | 452 | 1, 190 | 1,660
2,480
2,500 | .7 | | 3.0 | 6, 040 | 8, 21 | 1,910 | 63 | 2718
2719
2720 | | 103 | 1 | | | | | | 1 870 | | | | | | | | | | 103 | 740
753 | 263 | 46 | 1 300 | | 667 | 1, 840
2, 000
2 100 | 2 8 | | 2.5 | 4 500 | 6 24 | 846 | 78 | 2722
2723
2724 | | 207 | 726 | | | | | | 1,970 | | | | | | | | 2725 | | 178 | 103 | 42 | 9.4 | 159 | 248 | 85
 | 138
310 | | 3.8 | | 559 | .76 | ·144 | 71 | 2726 | | 166 | 178
157 | | | | 350 | | 315
275 | |
| | | | | | 2729 | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 166 | | | | | | ľ | | | | | | | | | | 750 | 152
151 | | | | 249 | 127 | 200
275
280 | 1.9 | 2. 5
 | . 2 | 825 | 1.12 | | | 2733
2734 | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 750 | | | | | | 2,060 | | | | | | | | 2735 | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 138
207 | | İ | | | | 252 | | | | | | | | 2737 | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 191
151 | | | | | | 380 | | | | | | | | 2739 | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 128
194 | 76 | 14 | 178 | 226
274 | 115 | 230
385 | 1.1 | 3.0 | .1 | 728 | .99 | 247 | 61 | 2741
2742 | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 189
169 | 108 | | 225 | 277 | | 370
320 | 1.1 | 1.0 | .1 | 970 | 1.32 | 356 | | 2743 | | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | 010 | 292 | 5 5 | 1,328 | 250 | 678 | | 3.4 | 2.0 | 1.5 | 4, 550 | 6. 19 | 954 | 75 | | | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | 733
731 | | | | | | 2, 050
2, 020 | | | | | | | | 2747
2748 | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 720
700 | 270 | 49 | 1, 230 | 235 | 632 | 1, 980
1, 910 | 3.0 | 0 | 1. 5 | 4, 210 | 5.73 | 876 | 75 | 2749
2750 | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 702
748 | | | | | | 2.070 | | | | | | | | 2751
2752 | | 112 | 765
131
125 | | | | 214 | 100 | 2, 130
238 | | | | ene | | 202 | | 2753
2754 | | 141 256 2759 | 1 | 04 | | 141 | 200 | 144 | 194 | | 9. Ŭ | <i>4</i> . U | บษอ | . 80 | 000 | οų | 2756 | | 134 200 2769 2760 | 129
148 | 92 | 16 | 193 | 233 | 127 | 228
275 | | 4.6 | | 822 | 1.12 | 296 | 59 | 2757
2758 | | | 134 | | | | | | 242 | | | | | | | | 2760
2760 | | Analysis No. | Source | Location | Date sampled | Depth of well (feet) | Yield (gallons
per minute) | Temperature (°F.) | |--------------------------------------|---|---|---|---|-------------------------------|----------------------------| | 2761
2762
2763
2764
2765 | Driven observation well—Con. 20-48. 20-48. 20-48. 20-48. 20-48. | do | Jan. 7, 1944
Mar. 3, 1944
Apr. 24, 1944
July 11, 1944
Aug. 30, 1944 | 18.4
18.4
18.4
18.4
18.4 | 10
10
6
6
8 | 66
64
64
65
67 | | 2766
2767
2768
2769
2770 | 20-48.
20-49.
20-49.
20-50.
20-50. | do | Oct. 30, 1944
Sept. 4, 1943
Apr. 25, 1944
Mar. 31, 1943
Sept. 2, 1943 | 18. 4

24
24 | 8
1
3
12
8 | 67
76
68
67 | | 2771
2772
2773
2774
2775 | 20-50 | 4. | Apr. 24, 1944
do
Mar. 31, 1943
Sept. 2, 1943
Apr. 24, 1944 | 24
18. 4
18. 4
18. 4 | 6
10
1
8
8 | 67
64
67
64 | | 2776
2777
2778
2779
2780 | 20-53 | | Aug. 5, 1943
Apr. 24, 1944
Sept. 2, 1943
Apr. 24, 1944
Sept. 3, 1943 | | 8
6
8
6
8 | 69
65
67
67
67 | | 2781
2782
2783
2784
2785 | 20-68 USGS 75 E. W. Black unused well E. M. Claridge domestic well do | do
NE¼NW¼ sec. 18.
SW¼NW¼ sec. 18.
NW¼SW¼ sec. 18.
do | Apr. 19, 1944
June 7, 1940
Mar. 19, 1943
Feb. 25, 1942
Mar. 19, 1943 | 14
29
47
47 | 8 | 65 | | 2786
2787
2788
2789
2790 | E. W. Black irrigation welldo | SE1/SW1/2 sec. 18
do
NE1/SE1/2 sec. 18
SE1/3E1/2 sec. 18
do | July 23, 1940
May 8, 1943
Mar. 22, 1943
do
Mar. 17, 1943 | 72
72
28
30
67. 7 | | | | 2791 | unused well. Fay Rabb and Elliot Montierth irrigation well. | do | May 3, 1943 | | | | | 2792
2793
2794
2795 | Elliot Montierth well. Joy Curtis domestic well. W. H. Holyoak irrigation well. Driven observation well, 21-1 | SELNEL sec. 18
SWLSEL sec. 18
SWLSWL sec. 18
SELNEL sec. 18 | Mar. 19, 1943
Mar. 18, 1943
Mar. 22, 1943
Mar. 31, 1943 | 19. 5
30
63
18. 7 | 12 | | | 2796
2797
2798
2799
2800 | do | do
do
dodo | Sept. 2, 1943
Apr. 24, 1944
Aug. 5, 1943
Apr. 24, 1944
Mar. 31, 1943 | 18. 7
18. 7 | 8
2
8
5 | 68
66
69
68 | | 2801
2802
2803
2804
2805 | 21-3 | do
dodododo | Sept. 2, 1943
Apr. 24, 1944
Mar. 31, 1943
Sept. 2, 1943
Apr. 24, 1944 | 18. 7
18. 7
19. 7
19. 7
19. 7 | 8
6
12
8
10 | 68
67
66
66 | | 2806
2807
2808
2809
2810 | 21-6 | dodododo | Apr. 5, 1943
Sept. 2, 1943
Oct. 28, 1943
Jan. 6, 1944
Mar. 1, 1944 | 18. 4
18. 4
18. 4
18. 4
18. 4 | 1
6
4
4
6 | 76
75
71
68 | | 2811
2812
2813
2814
2815 | 21-6 | do | Apr. 25, 1944
July 14, 1944
Sept. 1, 1944
Oct. 31, 1944
Aug. 5, 1943 | 18. 4
18. 4
18. 4
18. 4 | 5
3
2
3
5 | 67
70
74
73
70 | | nduct
X10° at | Ca) | a | nd po- | nate | 3 | fo . | E | (60) | (6) | Disso
soli | olved
ids | lness
O ₃ | dium | | |--|--------------|-------------------|----------------------------------|------------------------------------|---------------|--------------------------|--------------|---------------|--------------|----------------------|-----------------------|----------------------------|----------------|----------------------------| | Specific conduct-
ance (K×10° at
25° C.) | Calcium (Ca) | Magnesium
(Mg) | Sodium and po-
tassium (Na+K) | Bicarbonate
(HCO ₃) | Sulfate (SO4) | Chloride (Cl) | Fluoride (F) | Nitrate (NOs) | Borate (BOs) | Parts per
million | Tons per
acre-foot | Total hardness
as CaCO3 | Percent sodium | A molecular Ma | | 141 | | | | | | 266 | | | | | | | | 2 | | 128
129 | | | | | | 234
234 | | | | | | | | 2 2 | | 139
134 | | | | | | 236
240 | | | | | | | | 2 2 | | 209 | 160 | 29 | 247 | 265 | 188 | 455 | | 2.0 | | 1, 210 | 1. 65 | 518 | 51 | 1 | | 940
881 | | | | | | 2, 680
2, 540
144 | | | | | | | | 2 2 | | 96. 8
117 | | | | 200 | | 144
188 | | | | | | | | 2
2
2
2
2
2 | | 116 | | | | | | 196 | | | | | | | | 2 2 | | 115
192
153 | | | | 228 | | 184
375 | | | | | | | | 2 2 | | 153
169 | | | | | | 375
275
320 | | | | | | | | 2 2 | | 112
105 | 54 | 9.6 | 160 | 209 | 95 | 175
168 | | 5.8 | | 602 | .82 | 174 | 67 | 2 2 | | 150
127 | | | | | | 275
222 | | | | | | | | 2 | | 248 | | | | | | 445 | | | | | | | | 2
2 | | 194
71 | 44 | <u>-</u> | 94 | 200 | 66 | 330
89 | 7 | | | 404 | . 55 | 155 | 57 | 2 | | 142
67. 8
71. 7 | | | | 290 | | 230
96 | | | | | | | | 2 2 2 | | 71.7 | | | | 182 | | 81 | | | | | | | | 2 | | 65
73. 3 | | | | 144 | 34 | 73
96 | | | | | | 90 | | 2 2 | | 95. 9
90. 0 | 50 | 9. 4 | 130 | 196
179 | 79 | 278
154 | | 1, 5 | | 512 | .70 | 164 | 63 | 2 2 | | 74.1 | | | | 174 | | 105 | | | | | | | | 2 | | 68. 4 | 41 | 9. 2 | 96 | 172 | 64 | 100 | | | | 395 | . 54 | 140 | 60 | 2 | | 95. 0
130 | 66 | 14 | 189 | 200
226
198 | 117 | 144
230 | | 2 0 | | 720 | | 222 | 65 | 2 2 | | 65. 6
117 | 44 | 9. 2 | 83 | 198
241 | 56 | 230
74
184 | | 2. 0
3. 4 | | 729
367 | .50 | 148 | 55 | 2 2 | | 139 | | | | | | 235 | | | | | | | | 2 | | 139
96. 1
97. 5 | | | | | | 149
154 | | | | | | | | 2 2 2 | | 90. 2
97. 9 | 41
46 | 13
8. 7 | 134
149 | 195
213 | 84
91 | 137
144 | 1.6 | 2, 5
2, 5 | .1 | 509
546 | . 69
. 74 | 156
151 | 65
68 | 2 2 | | 88. 2
88. 2 | | | | | | 128
129 | | | | | | | | 2 | | 88. 2
127
104 | | | | 271 | | 204
158 | | | | | | | | 2 2 2 2 | | 125 | 64 | 14 | 193 | 265 | 116 | 206 | 1.5 | 3.0 | 0 | 728 | .99 | 217 | 66 | | | 189
235 | | | | 210
220 | | 405
520 | | | | | | | | 2 2 2 | | 235
182
172 | 76 | 14 | 306 | 215 | 171 | 520
390
355 | 2.3 | 2. 5 | 6. 0 | 1,070 | 1. 46 | 247 | 73 | 2 | | 188 | | | - | | | 400 | | | | - | | | | 2 | | 184
179
187 | | | | | | 385
365
390
720 | | | | | | | | 22 22 | | 187
299
109 | 199 | 33 | 404 | 272 | 255 | 390 | 1.5 | 3.0 | | 1, 750 | 2. 38 | 632 | 58 | 2 | | Analysis No. | Source | Location | Date sampled | Depth of well (feet) | Yield (gallons
per minute) | Temperature (°F.) | |--------------------------------------|--|--|--|----------------------|-------------------------------|-----------------------------------| | 2816
2817
2818
2819
2820 | Driven observation well—Con. 21-7 | NW4NE4 sec. 18
SW4SE4 sec. 18
do
NW4NE4 sec. 18 | Apr. 24, 1944
Oct. 8, 1943
Apr. 25, 1944
Mar. 31, 1943
Sept. 2, 1943 | 18. 6
18. 6 |
2
8
5
20
8 | 62
69
68
65 | | 2821
2822
2823
2824
2825 | 21-10 | do
SW¼NW¼ sec. 18do
do
do | Apr. 24, 1944
Aug. 5, 1943
Nov. 2, 1943
Jan. 6, 1944
Mar. 3, 1944 | 18.6 | 10
8
10
8
10 | 67
70
70
66
64 | | 2826
2827
2828
2829
2830 | 21-16 | do
do
do
NW¼NW¼ sec. 18_ | Apr. 24, 1944
July 11, 1944
Aug. 30, 1944
Oct. 30, 1944
Aug. 4, 1943 | | 6
6
10
6
8 | 64
68
71
71
67 | | 2831
2832
2833
2834
2835 | 21-21
21-26
21-27
21-27
21-30 | do
SW¼NW¼ sec. 18do
do
NE¼SE¼ sec. 18 | May 26, 1944
Aug. 4, 1943
Sept. 1, 1943
May 26, 1944
Sept. 2, 1943 | | 3
8
5
1 | 71
69
66
70 | | 2836
2837
2838
2839
2840 | 21-31
21-31
21-32
21-32
21-32
21-32 | SW¼NE¼ sec. 18
do | do
Apr. 24, 1944
Sept. 2, 1943
Nov. 2, 1943
Jan. 7, 1944 | | 8
8
1
.5 | 65
64
71,
70
66 | | 2841
2842
2843
2844
2845 | 21-32
21-32
21-32
21-32
21-32 | do
do
do
do | Mar. 3, 1944
Apr. 24, 1944
July 11, 1944
Aug. 30, 1944
Oct. 30, 1944 | | 1
1
1
1 | 64
66
69
71
70 | | 2846
2847
2848
2849
2850 | 21-33 | NW¼NE¼ sec. 18
do
NE¼SE¼ sec. 18
NE¼NW¼ sec. 18
do | Sept. 2, 1943
Apr. 24, 1944
Sept. 2, 1943
do
Apr. 24, 1944 | | 2
2
3
6
6 | 67
60
68
68
63 | | 2851
2852
2853
2854
2855 | 21-37 | do | Oct. 7, 1943
Sept. 2, 1943
Apr. 24, 1944
do | | 8
6
6 | 79
69
66
63
66 | | 2856
2857
2858
2859
2860 | 21–40
22–4
22–4
Mrs. J. B. Blessing domestic welldo | do
NW¼NW¼ sec. 18
do
NW¼NE¼ sec. 19
dodo | Apr. 24, 1944
Aug. 4, 1943
Apr. 27, 1944
Feb. 25, 1942
Mar. 18, 1943 | 34
34 | 3
8
3 | 63
68
66 | | 2861
2862
2863
2864
2865 | Otto Holyoak unused well | NE¼NE¼ sec. 19
NE¼SE¼ sec. 19
NW¼SE¼ sec. 19
SW¼SE¼ sec. 20
NW¼NW¼ sec. 20 | Mar. 19, 1943
Mar. 23, 1943
—do——
Feb. 18, 1944
Mar. 19, 1943 | 60
50
 | | | | 2866
2867
2868
2869
2870 | Ed. Chesley domestic well Domestic well, owner unknown do | NE¼SW¼ sec. 20
SW¼SE¼ sec. 20
dodo | Mar. 29, 1940
Feb. 25, 1942
Nov. 2, 1943
Jan. 5, 1944
Mar. 2, 1944 | 29 | | 72
67 | | 2871
2872
2873
2874
2875 | do
do
do
Seepage at mouth of Wash | do
do
do
SE¼NW¼ sec. 20 | May 3, 1944
July 11, 1944
Aug. 30, 1944
Oct. 30, 1944
Mar. 31, 1944 | | | 68 | between the mouth of Bonita Creek near Solomonsville and the Southern Pacific Railat Calva—Continued | | | | | [| | | | | | | | | | | |--|-----------------------|------------------------|-----------------------------|---------------------------------|-------------------------|--|------------------------|--------------------------|--------------------------|-----------------------------------|---------------------------------|--|----------------------|--| | Specific conduct-
ance (KX10° at
25° C.) | Calcium (Ca) | Magnesium
(Mg) | Sodium and potassium (Na+K) | Bicarbonate
(HCO3) | Sulfate (SO4) | Chloride (C1) | Fluoride (F) | Nitrate (NO3) | Borate (BO3) | Parts per million | Tons per acre-foot | Total hardness
as CaCO ₃ | Percent sodium | Analysis No. | | 121
338
445
144
120 | 78
228 | 19
51 | 160
681 | 306
290
258 | 76
408 | 202
845
1,130
262
196 | 1.9 | 0 | _0 | 688
2, 640 | . 94
3. 59 | 272
778 | 56
 | 2816
2817
2818
2819
2820 | | 119
128
103
107
110 | 64 | 13 | 147 | 242 | 101 | 200
205
160
162
170 | 1.4 | .5 | 3.0 | 699 | .82 | 213 | 60 | 2821
2822
2823
2824
2825
2826 | | 121
142
120
169
92. 5 | 134 | 23 | 195 | 256 | 174 | 232
184
325
128 | | 3.0 | | 980 | 1.33 | 429 | 45 | 2827
2828
2829
2830 | | 101
123
299
170
111 | 37
77 | 8. 5
20 | 219
270 | 218
280
249 | 145
256 | 138
194
685
270
202 | 2. 2 | 2. 0
6. 1 | 2. 0 | 713 | 1.39 | 128
274 | 79
68 | 2831
2832
2833
2834
2835 | | 146
130
82. 0
83. 0
96. 7 | 46 | 14 | 117 | 185 | 104 | 258
218
112
115
144 | .8 | 2. 2 | 4. 0 | 490 | . 67 | 172 | 60 | 2836
2837
2838
2839
2840 | | 155
128
80. 2
72. 0
71. 6 | 118
 | 21
7.0 | 194 | 194 | 208

 | 280
204
100
85
85 | 1.1 | 3. 0 | 5. 0 | 938
458 | 1. 28 | 381
132 | 53
67
 | 2841
2842
2843
2844
2845 | | 90. 0
201
95. 6
81. 2
193 | 91 | 21 | 326 | 331 | 191 | 130
385
144
108
375 | 1.9 | 3. 5 | .4 | 1,180 | 1.60 | 314 | 69 | 2846
2847
2848
2849
2850 | | 77. 5
80. 8
88. 0
494
110 | 132
54 | 52
17 | 981
160 | 708
225 | 702
121 | 106
104
122
935
168 | 3. 2
1. 1 | 47
2. Ó | 1. 5
2. 5 | 3, 200
634 | 4. 35
. 86 | 544
205 | 80
63 | 2851
2852
2853
2854
2855 | | 166
103
130
81.0
112 | | | | 189 | | 285
148
210
136
194 | | | | | | | | 2856
2857
2858
2859
2860 | | 358
415
56. 1
174
185 | 66
36
94
106 | 35
6. 8
31
20 | 842
72
244
259 | 518
648
162
270
285 | 393
54
181
158 | 745
835
59
335
358 | 2.0
 | 20
2. 5
11
5. 0 | 5. 0

1. 0
1. 4 | 2, 510
310
1, 030
1, 047 | 3. 41
. 42
1. 40
1. 42 | 308
118
362
346 | 86
57
60
62 | 2681
2862
2863
2864
2865 | | 98
126
244
273
292 | 155 | 34
 | 325
373 | 233
242
256 | 100
272
342 | 133
182
525
595
660 | .7 | 5.0
-13
-15 | 8.0 | 1, 440
1, 770 | 1. 96 | 63
527
698 | 57
54 | 2866
2867
2868
2869
2870 | | 345
426
443
452
238 | 277
363
88 | 57
74

25 | 409
472
 | 268
269

426 | 406
540

240 | 825
1, 020
1, 060
1, 080
440 | . 6
. 0

1. 5 | 8. 5
19

5. 0 | 2. 0
2. 0
2. 0 | 2, 120
2, 620

1, 430 | 2. 88
3. 56

1. 94 | 926
1, 210

322 | 49
46

74 | 2871
2872
2873
2874
2875 | Chemical character of ground waters in the Gila River Basin, Graham County, Ariz.; road bridge | Analysis No. | Source | Location | Date sampled | Depth of well (feet) | Yield (gallons
per minute) | Temperature (°F.) | |----------------------|--|--|---|----------------------|-------------------------------|-------------------| | 2876 | Seepage in Gila River channel on right bank. | SW1/4NE1/4 sec. 20 | Mar. 31, 1944 | | 20 | 77 | | 2877 | Driven observation well, 19-71 | SE¼SE¼ sec. 20
SE¼NE¼ sec. 20 | Sept. 3, 1943
Sept. 4, 1943 | | 8 | 65 | | 2878
2879
2880 | 20-2
20-2
20-4 | SE¼NE¼ sec. 20
do
NE¼SE¼ sec. 20 | Sept. 4, 1943
Apr. 19, 1944
Sept. 4, 1943 | | 8
5
8 | 68
63
62 | | 2881 | 20-4 | do | Apr. 19, 1944 | | 2 | 56 | | 2882 | 20-5 | SE¼NE¼ sec. 20
do | Sept. 4, 1943 | | 8 | 63 | | 2883
2884 | 20-5 | do | Jan. 5, 1944
Apr. 19, 1944 | | 8 | 63
61 | | 2885 | 20-5
20-6 | do | Apr. 19, 1944
Sept. 4, 1943 | | š | 63 | | 2886 | 20-6 | do | Apr. 19, 1944 | | 6 | 60 | | 2887
2888 | 20-8
20-8 | do | Sept. 4, 1943
Apr. 19, 1944 | | 8
6 | 63
63 | | 2889 | 20-9 | do | Sept. 4, 1943 | | 6 | 75 | | 2890 | 20-9 | do | Feb. 10, 1944 | | | | | 2891 | 20-9 | do | do | | | 69 | | 2892 | 20-9 | do | Apr. 17, 1944 | | 4 | 6 9 | | 2893
2894 | 20-10
20-10 | NE¼NE¼ sec. 20
do | Apr. 6, 1943 | 23. 7
23. 7 | 8
4 | 82 | | 2895 | 20-10 | do | Apr. 6, 1943
Sept. 3, 1943
Apr. 17, 1944 | 23.7 | 2 | 80 | | 2896 | 20-11 | SW14NE14 sec. 20 | Apr. 6, 1943 | 18.5 | 2 | | | 2897 | 20-11
20-11 | ldo | Sept. 3, 1943
Apr. 17, 1944
Sept. 4, 1943 | 18.5 | 6 | 68 | | 2898
2899 | 20-12 | do
NW¼NE¼ sec. 20 | Sept. 4, 1943 | 18. 5 | 5
6 | 64
77 | | 2900 | 20-12 | do | Feb. 10, 1944 | | | 76 | | 2901 | 20-12 | do | Apr. 17, 1944 | | 6 | 76 | | 2902 | 20-13 | NE¼NE¼ sec. 20 | Apr. 17, 1944
Sept. 4, 1943 | | 4 | 79
78 | | 2903
2904 | 20-13
20-14 | NW14NE14 sec. 20. | Apr. 17, 1944
Sept. 4 1943 | | 2
8 | 68 | | 2905 | 20-14 | do | Sept. 4, 1943
Apr. 17, 1944 | | 4 | 60 | | 2906 | 20-15 | do | Aug. 6, 1943 |] | 8 | 77 | | 2907 | 20-15.
20-15.
20-15. | do | Jan. 6.1944 | | 8
8 | 76 | | 2908
2909 | 20-15 | do | Mar. 1, 1944
Apr. 17, 1944 | | 8
6 | 74
75 | | 2910 | 20-15 | do | July 14, 1944 | | 4 | 76 | | 2911 | 20–15 | do | j | | 6 | 77 | | 2912 | 20-15 | do | Sept. 1, 1944
Oct. 31, 1944 | | 6 | 77 | | 2913 | 20-17 | do | Sept. 4, 1943 | | 8 | 65 | | 2914
2915
| 20-17
20-17 | do | Oct. 28, 1943 | | 5
10 | 64
63 | | | | do | · · | | | | | 2916 | 20-17 | do | Mar. 1, 1944 | | 10 | 61 | | 2917
2918 | 20-17
20-17 | do | Apr. 17, 1944
July 14, 1944 | | 8
6 | 60
62 | | 2919 | 20-17 | do | Sept. 1, 1944
Oct. 31, 1944 | | 6 | 62
63
64 | | 2920 | 20-17 | do | | | 8 | 04 | | 2921 | 20-20 | do | Apr. 5, 1943 | 18.4 | 10 | | | 2922
2923 | 20-20
20-20 | do | Sept. 2, 1943
Apr. 17, 1944
Sept. 4, 1943 | 18.4
18.4 | 8
6 | 65
61 | | 2924 | 20-23 | NE¼NW¼ sec. 20 | Sept. 4, 1943 | | 8 | 65 | | 2925 | 20-23 | do | Apr. 19, 1944 | | 4 | 61 | | 2926 | 20-54 | do | Sept. 4, 1943 | | 8 | 67 | | 2927
2928 | 20-54
20-55 | do | Apr. 17, 1944 | 18. 2 | 6
10 | 61 | | 2929 | 20-55 | do | Sept. 3, 1943 | 18.2 | 8 | 68 | | 2930 | 20-55 | do | Apr. 6, 1943
Sept. 3, 1943
Oct. 28, 1943 | 18. 2 | 10 | 68 | | 2931 | 20-55 | do | Jan. 6.1944 | 18.2 | 10 | 68 | | 2932 | 20-55 | do | Mar. 1, 1944 | 18.2 | 10 | 66 | | 2933
2934 | 20-55 | do | Apr. 17, 1944
July 14, 1944 | 18.2 | 8 | 65
65 | | 2934
2935 | 20-55 | do | Sept. 1, 1944 | 18. 2
18. 2 | 5
6 | 67 | | 2000 | av vva | UV | ~ I, 1044 | 10. M | U | ٠, ۱ | between the mouth of Bonita Creek near Solomonsville and the Southern Pacific Railat Calva—Continued [Analyses in parts per million] | duct- | (8) | | and po-
(Na+K) | nate
s) | 3 | R | | 6 | <u> </u> | Disse
sol | olved
ids | ness
1 | fum | | |--|--------------|-------------------|--------------------------|------------------------------------|--------------------------|--------------------------------------|--------------|---------------|---------------------------|----------------------|-----------------------|----------------------------|----------------|----------------------| | Specific conduct-
ance (K×10° at
26° C.) | Calcium (Ca) | Magnesium
(Mg) | Sodium an
tassium (Na | Bicarbonate
(HCO ₃) | Sulfate (SO4) | Chloride (Cl) | Fluoride (F) | Nitrate (NO3) | Borate (BO ₃) | Parts per
million | Tons per
acre-foot | Total hardness
as CaCOs | Percent sodium | A nolumin Mo | | 404 | 144 | 48 | 701 | 363 | 497 | 895 | | 3. 5 | 1.0 | 2, 470 | 3. 36 | 557 | 73 | 28 | | 648
976
782 | 323 | 99 | 1, 400 | 443
564 | 1, 060 | 1, 490
2, 570
1, 900 | 1.6 | 2.0 | 3.0 | 5, 060 | 6.88 | 1, 210 | 72 | 25
25
25 | | 575
429 | | | | | | 1, 270
900 | | | | | | | | 28 | | 641
585
549 | 254 | 73 | 1,030 | 572 | 785 | 1, 450
1, 330
1, 260 | 1. 2 | 15 | 10 | 3, 770 | 5. 13 | 934 | 71 | 25 | | 738
628 | 238 | 79 | 1,140 | 460 | 853 | 1,700
1,500 | .8 | 11 | 2.0 | 4, 050 | 5. 51 | 919 | 73 | 2 | | 599
592
684 | 296 | 77 | 990 | 510 | 803 | 1, 360
1, 370
1, 770 | 1.0 | 23 | 3. 5 | 3, 810 | 5. 18 | 1,060 | 66 | 21 21 21 | | 673
677 | 212 | 43 | 1, 260 | 341
356 | 623 | 1,770 | 4.6 | .5 | 5. 5 | 4, 080 | 5. 55 | 706 | 80 | 2 | | 547
591
588 | 139 | 28 | 1,050 | 215
190
174 | 486
527 | 1, 460
1, 570
1, 550 | 4.2 | 1.0 | 3.0 | 3, 270 | 4. 45 | 462 | 83 | 2 2 2 | | 550
515 | | | | 466 | | 1, 510 | | , | <u>-</u>
 -,, | | | | | 2 | | 544
578
558 | 278 | 70 | 977 | 376 | 794 | 1, 210
1, 390
1, 480 | .7 | 12 | 4.0 | 3,710 | 5. 05 | 982 | 68 | 21 21 | | 556
531 | 170 | 35 | 1,000 | 200 | 488 | 1,440 | 2.6 | 5.0 | 4.6 | 3, 260 | 4. 43 | 568 | 79 | 29 | | 531
749
637
1, 040
768 | | | | | | 2, 050
1, 780
2, 600
1, 880 | | | | | | | | 29 | | 587
564 | 183 | 35 | 1, 040 | 188
186 | 526 | 1, 590
1, 530 | 3.0 | 4.0 | 9. 0 | 3, 410 | 4.64 | 600 | 79 | 29
29 | | 558
555
558 | | | | | | 1, 490
1, 510
1, 460 | | | | | | | | 29 | | 548
551
968 | | | | 420 | | 1, 470
1, 480 | | | | | | | | 29
29
29 | | , 030
1, 060 | 465 | 138 | 1, 860 | 660 | 1, 137
1, 3 30 | 2, 500
2, 720
2, 840 | 1.4 | 1.0 | 8. 5 | 6, 840 | 9. 30 | 1,730 | 70 | 29 | | l, 090
l, 050
l, 110 | | | | | | 2, 920
2, 880
3, 020 | | | | | | | | 29
29
29 | | , 120
, 190 | | | | | | 2, 990
3, 260 | | | | | | | | 29 | | 946
942
1, 070
342 | | | | 338 | | 2, 470
2, 390
2, 950
720 | | | | | | | | 29
29
29
29 | | 335
402 | 144 | 34 | 583 | 479 | 352 | 710
860 | 1.0 | 5. 0 | 2. 5 | 2, 060 | 2.80 | 500 | 72 | 29 | | 499
413
390 | 236
147 | 59
45 | 830
673 | 514
346 | 631
509 | 1, 100
880
810 | 1. 3
1. 2 | 2. 5
1. 0 | 2. 0
6. 0 | 3, 110
2, 427 | 4. 23
3. 30 | 832
552 | 69
73 | 29
29
29 | | 399
396
423 | 173 | 43 | 678 | 4 57 | 486 | 865
845
920 | 1.4 | 9. 6 | 18 | 2, 460 | 3. 35 | 608 | 71 | 29
29
29 | | 432
454
417 | | | | | | 940
985
880 | | | | | | | | 20 | | Analysis No. | Source | Location | Date sampled | Depth of well (feet) | Yield (gallons
per minute) | Temperature (°F.) | |--------------------------------------|--|--|--|-------------------------|-------------------------------|----------------------------| | 2936
2937
2938
2939
2940 | Driven observation well—Con. 20-55. 20-57. 20-58. 20-58. 20-59. | NE¼NW¼ sec. 20
SW¼SE¼ sec. 20
NW¼SE¼ sec. 20
dodo | Oct. 31, 1944
Sept. 3, 1943
 | 18. 2 | 8
2
8
6
2 | 67
68
66
63
66 | | 2941
2942
2943
2944
2945 | 20-59
20-60
20-61
20-61
20-63 | do
SE¼NW¼ sec. 20
dodo
SW¼NE¼ sec. 20 | Apr. 19, 1944
Sept. 3, 1943
do
Apr. 19, 1944
Sept. 3, 1943 | | .5
8
8
6
2 | 63
65
65
62
68 | | 2946
2947
2948
2949
2950 | 20-63 | do
do
do | Apr. 19, 1944
Sept. 3, 1943
Apr. 19, 1944
Sept. 3, 1943
Feb. 10, 1944 | | 1
2
1.5
8 | 64
70
64
67 | | 2951
2952
2953
2954
2955 | 20-65.
20-65.
20-65.
20-65.
20-65. | do
do
do | Mar. 2, 1944
Apr. 19, 1944
July 11, 1944
Aug. 30, 1944 | | 8
10
8
10 | 64
64
66
68 | | 2956
2957
2958
2959
2960 | 20-65
20-66.
20-66.
20-67.
20-67. | do | Oct. 30, 1944
Sept. 3, 1943
Apr. 19, 1944
Sept. 3, 1943
Apr. 19, 1944 | | 8
8
10
8
8 | 68
66
65
65 | | 2961
2962
2963
2964
2965 | 20-69
20-69
20-69
20-69
20-69 | NW14NW14 sec. 20 | Sept. 3, 1943
Nov. 2, 1943
Jan. 7, 1944
Mar. 2, 1944
Apr. 19, 1944 | | 8
10
10
8
10 | 66
68
66
66 | | 2966
2967
2968
2969
2970 | 20-69
20-69
20-69
Spring in fault zone
Seepage in Gila River channel | do
do
NE¼NE¼ sec. 21
SW¼NW¼ sec. 21 | July 11, 1944
Aug. 30, 1944
Oct. 30, 1944
Feb. 27, 1942
Sept. 22, 1941 | | 7
8
6
7
5 | 67
68
68
81 | | 2971
2972
2973
2974
2975 | Driven observation well, 19-5 | SE¼SE¼ sec. 21dodo | Sept. 6, 1943
Apr. 14, 1944
Sept. 6, 1943
Apr. 14, 1944
Sept. 7, 1943 | | 6
8
2
. 25
8 | 73
63
85
77
63 | | 2976
2977
2978
2979
2980 | 19-11
19-12
19-16
19-16
19-17 | do | Apr. 14, 1944
Sept. 6, 1943
 | | 8
1
8
5
8 | 67
80
73
65
85 | | 2981
2982
2983
2984
2985 | 19-17 | do
do
do
sw¼se¼ sec. 21 | Apr. 14, 1944
Oct. 7, 1943
Mar. 1, 1944
Apr. 14, 1944
Oct. 13, 1943 | | 4
8
10
5
8 | 77
88
83
84
71 | | 2986
2987
2988
2989
2990 | 19-21 | do
do
NW¼SE¼ sec. 21
do | Apr. 14, 1944
Sept. 3, 1943
Apr. 14, 1944
Sept. 3, 1943
Apr. 14, 1944 | | 3
8
8
6
4 | 71
77
73
94
84 | | 2991
2992
2993
2994
2995 | 19-24 | SW¼SE¼ sec. 21dodododododo | Mar. 30, 1943
Sept. 4, 1943
Apr. 18, 1944
Sept. 3, 1943
Apr. 14, 1944 | 18. 7
18. 7
18. 7 | 5
8
10
5
2 | 64
63
75
73 | between the mouth of Bonita Creek near Solomonsville and the Southern Pacific Railat Calva—Continued | Specific conduct-
ance (KX10° at
25° C.) | Calcium (Ca) | Magnesium
(Mg) | Sodium and potassium (Na+K) | Bicarbonate
(HCO3) | Sulfate (SO4) | Chloride (Cl) | Fluoride (F) | Nitrate (NO ₈) | Borate (BO ₃) | Parts per
million | Tons per scre-foot | Total hardness
as CaCO ₃ | Percent sodium | Analysis No. | |--|--------------|-------------------|-----------------------------|-----------------------|---------------|----------------------------|--------------|----------------------------|---------------------------|----------------------|--------------------|--|----------------|----------------------| | | | | | | | | | | | <u> </u> | | | | | | 563
342 | 308 | 70 | 906 | 534 | 695 | 1,320
670 | | 5.0 | | 3, 570 | 4.86 | 1,060 | 65 | 2936
2937 | | 412
425
450 | 182 | 47 | 729 | 484 | 521 | 670
860
905
1,015 | 1.4 | 16 | 2.0 | 2, 640 | 3. 59 | 648 | 71 | 2938
2939
2940 | | 458 | | | | | | 960 | | | | | | | | 2941 | | 176
195 | | | | | | 320
360 | | | | | | | | 2942
2943
2944 | | 250
202 | 106 | 30 | 417 | 454 | 251 | 460
405 | 1.1 | 10
 | .5 | 1,500 | 2.04 | 388 | 70 | 2945 | | 222
285 | | | | | | 415
560 | | | | | | | | 2946
2947 | | 285
292
468 | 106 | 28 | 517 | 404 | 344 | 570
985
881 | 1.4 | 6. 2 | 2.0 | 1,770 | 2. 41 | 380 | 75 | 2948
2949 | | 425 | | | | 528 | | 881 | | | 5. 5 | | | | | 2950 | | 426
412 | 174 | 46 | 740 | 52 3 | 528 | 880
855
850 | 1.7 | 11 | | 2, 640 | 3. 59 | 623 | 72 | 2951
2952 | | 1 409 | | | | | | 850
875 | | | | | | | | 2952
2953
2954 | | 426
443 | | | | | |
945 | | | | | | | | 2955 | | 446 | | | | | | 955 | | | | |
 | | | 2956
2957 | | 183
195
352 | 68 | 20 | 331 | 336 | 187 | 305
345 | 1.5 | 12 | .4 | 1, 130 | 1. 54 | 252 | 74 | 2958 | | 352
387 | | | | | | 715
815 | | | | | | | | 2959
2960 | | 155 | | | | | | 270 | | | | | | | | 2961 | | 155
161
157 | 11 | 7.9 | 339 | 285 | 157 | 270
280
262 | . 9 | 4.5 | 16 | 941 | 1.28 | 60 | 92 | 2962
2963 | | 145
167 | | | | | | 252
295 | | | | | | | | 2964
2965 | | ı | | | | | | 300 | | | | | | | | | | 173
167
171 | | | | | | 295 | | | | | | | | 2966
2967
2968 | | 440
459 | 96 | 12 | 849 | 115 | 367 | 305
1, 170
1, 020 | 3.7
2.2 | | | 2, 550
2, 870 | 3.47 | 289 | 86 | 2969 | | 1 | 175 | 54 | 815 | 475 | 573 | | 2. 2 | 1.0 | | 2,870 | 3.90 | 659 | 73 | 2970 | | 851
794
540
453
776 | | | | | | 2, 440
2, 280 | | | | | | | | 2971
2972 | | 540
453 | | | | · | | 1,440
1,240 | | | | | | | - | 2973
2974 | | 778 | | | | | | 2, 210 | | | | | | | | 2975 | | 790 | | | | | | 2, 260 | | | | | | | | 2976
2977 | | 513
717 | | | | 213 | 587 | 1,960 | 3.8 | | 4.0 | | | | | 2978 | | 642
515 | | | | | | 1,770
1,380 | | | | | | | | 2979
2980 | | 515
714 | 113 | 18 | 1,010 | 140
152 | 426 | 1, 400 | 3.0 | 1.0 | .5 | 3, 040 | 4. 13 | 356 | 86 | 2981
2982 | | 714
490 | 104 | 18 | 959 | 124 | 403 | 2,020
1,340 | 3. 1
3. 1 | 5 | 1.0 | 2,890 | 3. 93 | 334 | 86
87 | 2983
2984 | | 475
656 | 97 | 14 | 935 | 115 | 381 | 1,300
1,880 | 3. 1 | . 5 | 2.5 | 2,790 | 3. 79 | 300 | | 2984
2985 | | 581
755 | 134 | 32 | 1, 130 | 202 | 461 | 1,600
1,660 | 3.8 | .5 | .5 | 3, 460 | 4.71 | 466 | 84 | 2986
2987 | | 755
562 | | | | | | 1,540 | | : | | 0.040 | | | | 2988 | | 506
501 | 86
96 | 16
15 | 993
1,000 | 118
120 | 479
484 | 1,300
1,320 | 4. 2
3. 8 | .5 | 5. 0
2. 5 | 2, 940
2, 980 | 4.00
4.05 | 280
301 | 89
88 | 2989
2990 | | 594 | | | | 462 | | 1,400 | | | | | | | | 2991 | | 559
404 | 180 | 52 | 662 | 458 | 444 | 1,300
895 | 1.0 | . 5 | . 5 | 2, 460 | 3. 35 | 663 | 68 | 2992
2993 | | 652
559 | 120 | 26 | 1,090 | 182 | 463 | 1,770
1,520 | 3.4 | 5 | 1.0 | 3,310 | | | 85 | 2994
2995 | | , | | | _, | | | 1,020 | J. 4 | | 5 | 5,010 | 00 | -50 | | | Chemical character of ground waters in the Gila River Basin, Graham County, Ariz., road bridge | | | | <u> </u> | | | | |--------------------------------------|--|--|---|------------------------------|--------------------------------|----------------------------| | Analysis No. | Source | Location | Date sampled | Depth of well (feet) | Yield (gallons
per minute), | Temperature
(°F.) | | 2996
2997
2998
2999
3000 | Driven observation well—Con,
19-26 | SW¼SE¼ sec. 21do NW¼SE¼ sec. 21dododo | Sept. 6, 1943
Apr. 14, 1944
Sept. 3, 1943
Apr. 14, 1944
Sept. 6, 1943 | | 8
2
2
1
2 | 85
79
86
77
85 | | 3001
3002
3003
3004
3005 | 19-28 | do
SE¼SW¼ sec. 21
dododo | Apr. 14,1944
Sept. 3,1943
Apr. 14,1944
Sept. 3,1943
Apr. 14,1944 | | 1
5
2
8
3 | 79
74
74
81
76 | | 3006
3007
3008
3009
3010 | 19-31
19-31
19-32
19-32
19-33 | NW\se\\ sec. 21dodo | Sept. 3, 1943
Apr. 14, 1944
Sept. 3, 1943
Apr. 14, 1944
Sept. 3, 1943 | | 5
1
5
8 | 83
75
84
79
72 | | 3011
3012
3013
3014
3015 | 19-33 | do
NE¼SW¼ sec. 21
do
SE¼NW¼ sec. 21
do | Apr. 14, 1944
Sept. 3, 1943
Apr. 14, 1944
Sept. 4, 1943
Apr. 17, 1944 | | 6
8
2
6
4 | 72
81
78
84
82 | | 3016
3017
3018
3019
3020 | 19-37.
19-37.
19-38.
19-38.
19-39. | NE¼SW¼ sec. 21
do
SE¼SW¼ sec. 21
do
NE¼SW¼ sec. 21 | Sept. 4,1943
Apr. 19,1944
Sept. 3,1943
Apr. 17,1944
Apr. 6,1943 | 18.6 | 8
4
8
6
5 | 66
63
75
73 | | 3021
3022
3023
3024
3025 | 19-39 | do
do
do
do
sel_nw¼ sec. 21 | Sept. 3, 1943
Apr. 17, 1944
Sept. 6, 1943
Apr. 17, 1944
Sept. 4, 1943 | 18. 6
18. 6 | 2
2
4
4
8 | 78
73
78
74
82 | | 3026
3027
3028
3029
3030 | 19-41 | dodo
NW¼SW¼ sec. 21do
NW¼SW¼ sec. 21 | Apr. 17, 1944
Mar. 30, 1943
Sept. 3, 1943
Apr. 19, 1944
Apr. 6, 1943 | 18
18
18
18
18.8 | 3
2
8
4
2 | 80
65
63 | | 3031
3032
3033
3034
3035 | 19-43 | do
dododo | Sept. 3, 1943
Apr. 17, 1944
Sept. 4, 1943
Oct. 28, 1943
Jan. 6, 1944 | 18. 8
18. 8 | 5
6
6
5 | 74
70
76
75
72 | | 3036
3037
3038
3039
3040 | 19-44 | do | Mar. 1, 1944
Apr. 17, 1944
July 12, 1944
Sept. 1, 1944
Oct. 31, 1944 | | 8
5
4
4
2 | 70
69
72
75
75 | | 3041
3042
3043
3044
3045 | 19-45 | SE¼NW¼ sec. 21dododo | Apr. 6, 1943
Sept. 4, 1943
Apr. 17, 1944
Sept. 4, 1943
Sept. 3, 1943 | 18. 5
18. 5
18. 5 | 8
8
8
6
8 | 77
72
81
62 | | 3046
3047
3048
3049
3050 | 19-47 | do | Apr. 19,1944
Mar. 30,1943
Sept. 3,1943
Apr. 19,1944
Apr. 17,1944 | 18. 4
18. 4
18. 4 | 5
8
8
8 | 58
 | | 3051
3052
3053
3054
3055 | 19-51 | do
do
sw¼nw¼ sec. 21 | Mar. 30, 1943
Sept. 3, 1943
Apr. 19, 1944
Sept. 4, 1943 | 18. 9
18. 9
18. 9 | 5
8
3
8 | 68
66
74
70 | between the mouth of Bonita Creek near Solomonsville and the Southern Pacific Railat Calva—Continued | | | | | , | | | | | | | | | | | |--|--------------|-------------------|-------------------|---------------------|--------------------------|---|--------------|-------------------|---------------------------|----------------------|-----------------------|----------------------------|----------------|--------------------------------------| | onduct- | (Ca) | a a | and po-
(Na+K) | onate | (*0; | (CI) | (£) | NO ₃) | 303) | Disso
soli | ids | dness | odium | No. | | Specific conduct-
ance (K×10° at
25° C.) | Cafedum (Ca) | Magnesium
(Mg) | Sodium tassium (| Bicarbona
(HCO3) | Sulfate (SO4) | Chloride (Cl) | Fluoride (F) | Nitrate (NO3) | Borate (BO ₂) | Parts per
million | Tons per
acre-foot | Total hardness
as CaCO3 | Percent sodium | Analysis No. | | 561 | | | | | | 1, 450 | | | | | | | | 2996 | | 523
520
509
559 | 102 | 18 | 1,000 | 132 | 486 | 1,390
1,350
1,340
1,460 | 3.4 | .0 | . 5 | 3, 010 | 4. 09 | 328 | 87 | 2996
2997
2998
2999
3000 | | 529
615 | | | | | | 1, 410
1, 640 | | | | | | | | 3001
3002 | | 572
526
564 | 129 | 29 | 1, 120 | 188 | 513 | 1,410
1,640
1,540
1,360
1,510 | 3.8 | 0, | 2.0 | 3, 430 | 4. 66 | 441 | 85 | 3003
3004
3005 | | 563
560
548 | | | | | | 1, 410
1, 470 | | | | | | | | 3006
3007
3008 | | 548
510
582 | 117 | 21 | 999 | 154 | 491 | 1,350
1,530 | 3.8 | .0 | 1. 5 | 3, 060 | 4. 16 | 378 | 85
 | 3008
3009
3010 | | 578
530 | 127 | 29 | 1, 120 | 191 | 531 | 1,530
1,370 | 4. 2 | .0 | 1. 5 | 3, 440 | 4. 68 | 436 | 85 | 3011
3012 | | 561
524
507 | | | | | | 1,480
1,350
1,340 | | | | | | | | 3013
3014
3015 | | 856
880
692 | 569
604 | 142
152 | 1,246
1,310 | · 562
· 592 | 1, 180
1, 2 50 | 2, 130
2, 240
1, 830
1, 540 | 1.1 | 22
33 | 2.5
.2 | 5, 570
5, 880 | 7. 58
8. 00 | 2,004
2,130 | 57
57 | 3016
3017
3018 | | 590
607 | 126
143 | 26
28 | 1, 160
1, 172 | 200
197 | 573
563 | 1,830
1,540
1,610 | 4. 6 | 1.0
1.0 | 4. 0
4. 5 | 3, 530
3, 610 | 4.80
4.91 | 422
472 | 86
84 | 3019
3020 | | 533
556
591 | | | | | | 1,390
1,440 | | | | | | | | 3021
3022
3023 | | 513
500 | | | | | | 1,570
1,350
1,300 | | | | | | | | 3024
3025 | | 500
733
843 | 155 | 24 | 909 | 164
507 | 465 | 1,300
1,740
2,080
1,950 | 3.4 | 1.5 | 2. 5 | 2, 940
 | 4.00 | 486 | 80 | 3026
3027
3028 | | 733
843
795
675 | 501 | 132 | 1, 230 | 644
464 | 1, 130 | 1, 950
1, 760 | 1.1 | 24 | .4 | 5, 290 | 7. 19 | 1, 790 | 60 | 3029
3030 | | 727
616
806 | 142 | 27 | 1, 210 | 218 | 599 | 1, 930
1, 610
2, 190 | 4.6 | 1.0 | 3.0 | 3, 700 | 5. 03 | 466 | 85 | 3031
3032
3033 | | 851
744 | 272 | 64 | 1,630 | 308 | 868 | 2, 190
2, 350
1, 990 | 4.0 | 1.0 | 15 | 5, 340 | 7. 26 | 942 | 79 | 3034
3035 | | 728
713
814 | | | | | | 1,970
1,910
2,190 | | | | | | | | 3036
3037
3038 | | 803
1,020 | 356 | 66 | 1,960 | 312 | 1,030 | 2, 190
2, 190
2, 900 | - | 1.0 | | 6, 470 | 8.80 | 1,160 | 79 | 3038
3039
3040 | | 538
616
568 | 196 | 43 | 1,020 | 297
256 | 571 | 1,330
1,590
1,470
1,470 | 3.4 | 1.0 | 2.5 | 3, 430 | 4. 66 | 666 | 76 | 3041
3042
3043 | | 563
714 | | | | | | 1,660 | | | | | | | | 3044
3045 | | 589
613
746 | 296 | 78 | 1,023 | 586 | 803 | 1,320
1,390 | | 8. 9 | 4. 5 | 3, 890 | 5. 29 | 1,059 | 68 | 3046
3047
3048 | | 704
971 | | | | | | 1, 730
2, 720 | | | | | | | | 3049
3050 | | 560
526
500
505 | 136 | 33 | 918 | 227
164 | 447 | 1,460
1,380
1,320 | 2.6 | 2.0 | 2.0 | 2, 940 | 4. 00 | 475 | 81 | 3051
3052
3053 | | 494 | 128 | 28 | 914 | 165 | 440 | 1, 290 | 3.4 | .5 | | 2,890 | 3. 93 | 434 | 82 | 3054
3055 | | Analysis No. | Source | Location | Date sampled | Depth of well (feet) | Yield (gallons
per minute) | Temperature (°F.) | |--
---------------------------------------|--|---|----------------------|-------------------------------|----------------------------| | 3056
3057
3058
3059
3060 | Driven observation well—Con,
19-52 | SW¼NW¼ sec, 21
dododododododo | Feb. 10, 1944
Mar. 1, 1944
Apr. 25, 1944
July 12, 1944
Sept. 1, 1944 | | 6
6
6
8 | 70
70
70
63
73 | | 3061
3062
3063
3064
3065 | 19-52 | do | Oct. 31, 1944
Sept. 4, 1943
Apr. 18, 1944
Sept. 6, 1943
Apr. 14, 1944 | | 5
8
4
8
. 25 | 73
65
66
93
79 | | 3066
3067
3068
3069 | 19-57 | NE¼SE¼ sec. 21
do | Sept. 6, 1943
Feb. 10, 1944
 | | 8
6
8 | 97
91
91
96 | | 3070
3071
3072
3073
3074
3075 | 19-5/ | NW4SE4 sec. 21
NE4SE4 sec. 21
do
SW4NE4 sec. 21
do | Oct. 13, 1943
Sept. 3, 1943
Apr. 14, 1944
Sept. 3, 1943
Oct. 28, 1943 | | 8
6
8
8 | 89
95
92
91
92 | | 3076
3077
3078
3079
3080 | 19-60 | do
do
do | Jan. 6, 1944
Mar. 1, 1944
Apr. 25, 1944
July 12, 1944
Sept. 1, 1944 | | 12
12
10
10
10 | 91
89
88
90
91 | | 3081
3082
3083
3084
3085 | 19-60 | do
NW¼SW¼ sec. 21
do
NE¼SW¼ sec. 22
SE¼NW¼ sec. 22 | Oct. 27, 1944
Sept. 4, 1943
Apr. 19, 1944
Dec. 17, 1941 | | 8
8
6
5
5 | 91
56
56
72
83 | | 3086
3087
3088
3089
3090 | USGS 111-C | SW¼NW¼ sec. 22dododo
dosw¼sw¼ sec. 22 | Apr. 14, 1940
Dec. 17, 1941
Feb. 10, 1944
do
Sept. 6, 1943 | | 20
10
1 | 61
61
72 | | 3091
3092
3093
3094
3095 | do | dododododo | Apr. 12, 1944
Sept. 6, 1943
Oct. 28, 1943
Jan. 6, 1944
Mar. 1, 1944 | | 2
4
10
8 | 66
72
72
71
69 | | 3096
3097
3098
3099
3100 | 18-62 | do | May 3, 1944
July 12, 1944
Sept. 1, 1944
Oct. 27, 1944
Oct. 7, 1943 | | 2
5
6
5
8 | 69
70
71
72
70 | | 3101
3102
3103
3104
3105 | 19-63 | do
dododo | Apr. 12, 1944
Sept. 6, 1943
Apr. 12, 1944
Sept. 6, 1943
Apr. 14, 1944 | | 2
4
2
2
3 | 70
73
71
92
88 | | 3106
3107
3108
3109
3110 | 18-66 | NW¼SW¼ sec. 22do
BE¼SW¼ sec. 22dodo | Sept. 6, 1943
Apr. 14, 1944
Sept. 6, 1943
Apr. 17, 1944
Sept. 6, 1943 | | 1
3
6
8 | 90
86
93
86
87 | | 3111
3112
3113
3114
3115 | USGS 96 | SW¼SW¼ sec. 26
 | May 29, 1940
Oct. 2, 1941
Oct. 6, 1943
Sept. 8, 1943
Oct. 6, 1943 | 14 | 8
3
8 | 62
73
79
64 | | 7-45 | 1 | I | 40 | - o | 1 | 1 | 1 | 1 | Ī | Ī | | <u> </u> | | F | |--|--------------|-------------------|----------------------------------|------------------------------------|---------------|--------------------------------------|--|----------------------------|--------------|----------------------------|-----------------------|----------------------------|----------------|------------------------------| | Specific conduct-
ance (K×10° at
25° C.) | िळ | | Sodium and po-
tassium (Na+K) | Bicarbonate
(HCO ₃) | - | 9 | | 3 | 3 | Disse
sol | olved
ids | ess | l ä | . | | SM X | l ã | lin C | Na R | Co. | (80, | 0) | (F) | ž | (B) | h | 닐☆ | ordin
CO3 | soq | ž | | es es co | Oaleium (Oa) | Magnesium
(Mg) | | H. H. | Sulfate (SO4) | Chloride (CI) | Fluoride (F) | Nitrate (NO ₃) | Borate (BO3) | Parts per
million | Tons per
acre-foot | Total hardness
as CaCO3 | Percent sodium | Analysis No. | | Spe St | Ca <u>t</u> | Mag | Sodi | Bie | Sulf | CPT | Flux | Zitr | Bors | Part | Ton | Tota | Perc | Ana | | - | | | | ļ | | | | | <u> </u> | | <u> </u> | <u> </u> | | <u> </u> | | 501 | | | | 200 | | 1, 290 | | l | 2.9 | | | | | 3056 | | 491
491 | | | | | | 1,290
1,300
1,300
1,300 | | | | | | | | 3057
3058 | | 511
569 | 178 | 33 | 1,050 | 206 | 512 | 1,300
1,520 | 3.0 | 1.5 | 10 | 3, 400 | 4. 62 | 580 | 80 | 3059
3060 | | 699 | 110 | " | 1,000 | 200 | 012 | 1,930 | 3.0 | 1.5 | 10 | 3, 100 | 4.02 | 000 | 60 | 3061 | | 931
936 | 696 | 178 | 1, 250 | 505 | 1, 290 | 2, 420
2, 450 | .6 | 20 | 3.8 | 6, 100 | 8. 30 | 2, 469 | 52 | 3062
3063 | | 485 | 94 | 18 | 933 | 111 | 368 | 1,320 | | 2. 0 | | 2, 790 | 3. 79 | 308 | 87 | 3064 | | 587 | | | | 100 | | 1,540 | | | | | 4.00 | | | 3065 | | 501
516 | 84
96 | 13
14 | 1,010
1,010 | 106
120 | 454
484 | 1,340
1,340
1,340 | 3.8 | .5 | 5.0 | 2, 960
3, 010 | 4. 03
4. 09 | 263
297 | 89
88 | 3066
3067
3068 | | 520
511
494 | | | | 128 | | 1,300 | | | 4. 4 | | | | | 3069 | | | | | | | | 1,300 | | | | | | | | 3070 | | 494
500
506 | | | | 150 | | 1,310
1,280
1,300
1,370 | | | | | | | | 3071
3072
3073
3074 | | 506
516 | 96 | 14 | 1,000 | 130 | 500 | 1,300
1,370 | 3.8 | 2.0 | 4. 5 | 2, 980 | 4.05 | 297 | 88 | 3073
3074 | | 491 | 134 | 23 | 937 | 146 | 468 | 1,310 | 3.8 | 2.0 | 5.0 | 2, 950 | 4.01 | 429 | 83 | 3075 | | 480
486 | 129 | 17 | 910 | 132 | 448 | 1, 280
1, 300 | 3.4 | 2.0 | 8.0 | 2, 910 | 3.96 | 392 | 83 | 3076
3077 | | 497
561 | | | | | | 1,320
1,480 | | | | | | | | 3078
3079 | | 541 | | | | | | 1,440 | | | | | | | | 3080 | | 522
621
427
462 | 310 | 84 | 1,026 | 542 | 852 | 1,400 | 1. 2 | 14 | 5. 0 | 3, 970 | 5. 40 | 1, 119 | 67 | 3081
3082
3083 | | 427 | 100 | 11 | 903 | 116 | 385 | 1, 420
915
1, 250 | | | | | 3. 69 | 294 | | 3083
3084 | | 397 | 160 | 16 | 671 | 94 | 294 | 1,090 | 1.4 | | | 2, 710
2, 279 | 3. 10 | 466 | 87
76 | 3085 | | 480 | 124 | 17 | 908 | 159 | 421 | 1, 265 | | | | 2, 810 | 3. 82 | 379 | 84 | 3086
3087 | | 480
370
445 | 120
103 | 17
14 | 898
852 | 134
118 | 420
381 | 1, 265
1, 250
1, 180 | 4.3
3.5 | 1.0 | | 2, 810
2, 780
2, 590 | 3.78
3.52 | 370
314 | 84
85 | 3088 | | 449
739 | | ~ | | 136 | | 1, 160
2, 080 | | | 2.7 | | | | | 3089
3090 | | 726 | | | | | | 2,030 | | | | | | | | 3091 | | 726
732
700 | 286 | 83 | 1, 190 | 325 | 523 | 2,000 | 2.6 | 3. 5 | 8.0 | 4, 250 | 5. 78 | 1,060 | 71 | 3092
3093 | | 715
720 | | | | | | 2, 040
2, 080 | | | | | | | | 3094
3095 | | 733 | | ~ | | | | 9 190 | | | | | | | | 3096 | | 772
757 | | | | | | 2, 230
2, 220 | | - - | | | | | | 3096
3097
3098
3099 | | 757
734
821 | | | - | | | 2, 230
2, 220
2, 160
2, 360 | | | | | | | | 3099
3100 | | 714 | | | | | | | | | | | -52 | | | | | 591 | 152 | 26 | 1,000 | 158 | 466 | 1, 970
1, 590
1, 450 | 2.6 | 6.3 | 1.0 | 3, 180 | 4. 32 | 486 | 82 | 3101
3102
3103 | | 543
555
468 | 92 | 12 | 919 | 107 | 360 | 1, 550
1, 280 | 3.1 | 1.0 | 2,0 | 2, 720 | 3. 70 | 279 | 88 | 3104
3105 | | i | 02 | 12 | 010 | 107 | 300 | 1,410 | 0.1 | 1.0 | 2.0 | 2,140 | 0.10 | 2,0 | 55 | 3106 | | 521
485
519 | | | | | | 1,340
1,390 | | | | | | | | 3107
3108 | | 509
505 | 122 | 17 | 977 | 118 | 414 | 1,390 | 3.0 | 4.0 | 3. 5 | 2, 990 | 4.07 | 374 | 85 | 3109 | | | 740 | 000 | 1 051 | 104 | 1 000 | 1,370 | | | | | 0.00 | 0.000 | | 3110 | | 1, 190
467 | 740 | 260
~ | 1,651 | 194
316 | 1, 382 | 3, 480
1, 075 | .0 | | | 7, 220 | 9.82 | 2, 920 | 55
 | 3111
3112 | | 701
829 | | | | 383 | | 1, 940
2, 320 | | | | | | | | 3113
3114 | | 395 | l | | | | | 955 | l | | l | | | | | 3115 | | ٠ | | | | | | | |--------------------------------------|--|--|---|-----------------------------------|--------------------------------|----------------------------| | Analysis No. | Source | Location | Date sampled | Depth of well (feet) | Yield (gallons)
per minute) | Temperature
(°F.) | | 3116
3117
3118
3119
3120 | Driven observation well—Con. 17-50 | SW¼SW¼ sec. 26
SE½SE½ sec. 26
SW¼SW¼ sec. 26
dodo | Sept. 8,
1943
Oct. 6, 1943
Sept. 8, 1943
dodo | | 4
8
2
2
1 | 76
72
68
75
66 | | 3121
3122
3123
3124
3125 | 17-55.
17-55.
H. Uhli irrigation well | do
8E¼NE¼ sec. 27
do
NW¼NE¼ sec. 27 | Mar. 27, 1943
Sept. 7, 1943
June 19, 1940
May 17, 1943
Feb. 27, 1942 | 18. 6.
18. 6
65
65
29 | 2
6
1,382
1,750 | 67
68
68 | | 3126
3127
3128
3129
3130 | T. L. Willis stock well. Driven observation well, USGS 93. USGS 94. USGS 94. USGS 95. | SW\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | Feb. 25, 1942
June 7, 1940
May 30, 1940
Nov. 5, 1943
May 29, 1940 | 54
21
22 -
22 -
19 - | | 61
65
62 | | 3131
3132
3133
3134
3135 | USGS 95
Seepage in Gila River channel
T. L. Willis irrigation well.
Driven observation well, 18-5do | do
NE¼SW¼ sec. 27
SW¼SW¼ sec. 27
SE¼SE¼ sec. 27
do | Nov. 5, 1943
Sept. 22, 1941
July 1, 1944
Oct. 7, 1943
Oct. 28, 1943 | 19 | 2
8
5 | 71

72
73 | | 3136
3137
3138
3139
3140 | dodododo | do
do
do | Jan. 6, 1944
Mar. 1, 1944
Apr. 25, 1944
July 16, 1944
Aug. 29, 1944 | | 5
10
3
8
10 | 71
66
62
62
67 | | 3141
3142
3143
3144
3145 | do | do
dodododo | Oct. 27, 1944
Mar. 29, 1943
Sept. 6, 1943
Apr. 11, 1944
Oct. 7, 1943 | 18. 7
18. 7
18. 7 | 8
5
8
6
8 | 71

61
65 | | 3146
3147
3148
3149
3150 | 18-10 | do
SW¼SE¼ sec. 27
do
do
do
do | Apr. 11, 1944
July 27, 1943
Apr. 11, 1944
Mar. 30, 1943
Sept. 6, 1943 | 18. 3
18. 3 | 8
4
10
1
1 | 65
63
61
68 | | 3151
3152
3153
3154
3155 | 18-13 | do
SE¼SE¼ sec. 27
do
do
NE¼SE¼ sec. 27 | Apr. 11, 1944
Mar. 29, 1943
Sept. 6, 1943
Apr. 11, 1944
Sept. 8, 1943 | 18.3
18.8
18.8
18.8 | 1
5
5
5
8 | 61
69
63
65 | | 3156
3157
3158
3159
3160 | 18-15 | do
SW¼SE¼ sec. 27
do
do
do | Apr. 11, 1944
July 27, 1943
Apr. 18, 1944
Mar. 30, 1943
Sept. 6, 1943 | 18. 4
18. 4 | 6
2
5
2
4 | 64
62
56
63 | | 3161
3162
3163
3164
3165 | 18-17 | do
do
do
NW\set_\(\sec. 27 | Apr. 11, 1944
Mar. 30, 1943
Sept. 6, 1943
Apr. 11, 1944
Sept. 8, 1943 | 18. 4
18. 7
18. 7
18. 7 | 3
1
4
1.5
8 | 61
64
63
74 | | 3166
3167
3168
3169
3170 | 18-19
18-20
18-21
18-21 | do | Apr. 11, 1944
July 27, 1943
Apr. 11, 1944
Mar. 29, 1943
Sept. 6, 1943 | 18. 6
18. 6 | 8
4
5
5 | 59
65
60 | | 3171
3172
3173
3174
3175 | 18-21
18-22
18-22
18-22
18-23 | do
NW¼SE¼ sec. 27
do
do
NW¼SW¼ sec. 27 | Apr. 11, 1944
Mar. 29, 1943
Sept. 6, 1943
Apr. 11, 1944
Sept. 8, 1943 | 18.6
18.8
18.8
18.8 | 2
5
8
8 | 61
 | | Specific conduct-
ance (K×10° at
25° C.) | Calcium (Ca) | Magnesium
(Mg) | Sodium and po-
tassium (Na+K) | Bicarbonate
(HCO ₃) | Sulfate (SO4) | Chloride (Cl) | Fluoride (F) | Nitrate (NOs) | Borate (BO ₃) | Parts per
million | Tons per foot | Total hardness
as CaCOs | Percent sodium | Analysis No. | |--|-------------------------|--------------------|----------------------------------|------------------------------------|-----------------------|--|--------------------------|-----------------|---------------------------|-----------------------------------|----------------------------------|--------------------------------|--------------------|--------------------------------------| | 207
418
604
481
398 | | | | 297 | | 395
1,030
1,640
1,175
970 | | | | | | | | 3116
3117
3118
3119
3120 | | 695
802
540
460
678 | 245
248 | 67
69 | 654
1,134 | 371
345
288 | 400
402
400 | 1, 610
2, 030
1, 388
1, 140
1, 925 | | | | 2, 680
3, 920 | 3. 64
5. 33 | 990
887
902 | 62
73 | 3121
3122
3123
3124
3125 | | 960
420
600
664
760 | 168 | 62 | 630 | 165 | 436 | 2, 475
1, 030
1, 474
1, 840
1, 980 | 1.0 | | | 2, 408 | 3.27 | 674 | 67 | 3126
3127
3128
3129
3130 | | 615
149
477
589
612 | 310
67
248
351 | 91
18
61
 | 962
236
758
 | 337
294
413
 | 634
111
591
 | 1, 630
280
1, 100
1, 530
1, 620 | 1.3
1.0
1.0
1.3 | 1.0
.5
15 | 15
4.2
12 | 3, 800
858
2, 980
3, 860 | 5. 17
1. 17
4. 05
5. 25 | 1, 150
241
870
1, 280 | 65
68
66
 | 3131
3132
3133
3134
3135 | | 603
636
615
806
901 | 496
532 | 143
158 | 1, 140
1, 330 | 382
406 | 859
971 | 1, 560
1, 650
1, 570
2, 190
2, 490 | .8 | .0 | 5. 0
5. 0 | 5, 020
5, 700 | 6, 83
7. 75 | 1,830
1,980 | 57
59 | 3136
3137
3138
3139
3140 | | 444
1, 140
1, 070
895
533 | 186
677
 | 54
203
 | 745
1, 723
1, 470 | 392
655
609
374 | 461
1,307
1,180 | 1,060
3,100
2,900
2,290
1,370 | 2.2 | 4.0 | 4.0 | 2, 710
7, 330
5, 890 | 3. 69
9. 97
8. 01 | 686
2, 520
1, 780 | 70
60
64 | 3141
3142
3143
3144
3145 | | 594
931
817
1, 220
1, 040 | 406 | 110 | 788 | 395

673 | 612 | 1, 570
2, 410
1, 970
3, 350
2, 750 | 1.0 | 1.0 | 2.0 | 3, 680 | 5.00 | 1, 470 | 54 | 3146
3147
3148
3149
3150 | | 908
818
795
891
555 | 608 | 169 | 1, 270 | 468
548 | 1,070 | 2, 330
2, 180
2, 140
2, 400
1, 370 | .8 | 17 | 4.0 | 5, 800 | 7.89 | 2, 210 | 55 | 3151
3152
3153
3154
3155 | | 621
784
830
1, 150
991 | 348 | 98 | 1, 383 | 580
-618 | 1, 101 | 1, 640
1, 860
1, 920
3, 070
2, 650 | * | 40 | 48
28
4
-4
 | 5, 120 | - 6. 96 | 1, 272 | 70 | 3156
3157
3158
3159
3160 | | 939
1, 210
1, 160
1, 010
413 | 587 | 174 | 1, 620 | 638 | 1, 290 | 2, 400
3, 370
3, 190
2, 700
990 | | 29 | 4.0 | 6,720 | 9.14 | 2, 180 | 62 | 3161
3162
3163
3164
3165 | | 528
1, 120
838
1, 390
1, 180 | 627
876 | 185 | 1, 872
2, 073 | 675 | 1, 588
1, 633 | 1, 380
2, 970
2, 000
3, 910
3, 210 | 1.0 | | -4.0 | 7, 570
9, 100 | 10.3
12.4 | 2, 326
3, 270 | 64
58 | 3166
3167
3168
3169
3170 | | 995
1,190
1,090
1,170
692 | | | | 637 | -40 | 2, 540
3, 330
3, 100
3, 290
1, 840 |

 | | | | | | | 3171
3172
3173
3174
3174 | | Analysis No. | Source | Location . | Date sampled | Depth of well (feet) | Yield (gallons
per minute) | Temperature (°F.) | |--------------------------------------|---|---|---|---|-------------------------------|----------------------------| | 3176
3177
3178
3179
3180 | Driven observation well—Con. 18-23. 18-24. 18-24. 18-24. 18-25. | NW148W14 sec. 27
SE148W14 sec. 27dododo | Apr. 11, 1944
Mar. 29, 1943
Sept. 6, 1943
Apr. 18, 1944
Sept. 8, 1943 | 15. 8
15. 8
15. 8 | 6
1
.5
1
4 | 66
69
63
69 | | 3181
3182
3183
3184
3185 | 18-25.
18-26.
18-26.
18-27.
18-27. | do
do
NE¼SE¼ sec. 27
do | Apr. 12,1944
Sept. 8,1943
Apr. 12,1944
Sept. 8,1943
Apr. 11,1944 | | 2
8
4
8
5 | 61
72
59
69
62 | | 3186
3187
3188
3189
3190 | 18-28 | SW¼NE¼ sec. 27
do
SE¼SW¼ sec. 27
dodo | Sept. 7, 1943
Apr. 11, 1944
Mar. 29, 1943
Sept. 6, 1943
Apr. 18, 1944 | 18. 4
18. 4
18. 4 | 4
6
5
6
2 | 65
67
63
61 | | 3191
3192
3193
3194
3195 | 18-30 | NE¼SW¼ sec. 27
do
do
SE¼NW¼ sec. 27 | Sept. 7, 1943
Apr. 12, 1944
Sept. 7, 1943
Apr. 12, 1944
Sept. 7, 1943 | | 8
5
2
3 | 70
63
62
62
65 | | 3196
3197
3198
3199
3200 | 18-32
18-33
18-33
18-34
18-34 | do
SW¼NE¼ sec. 27
do
NW¼SW¼ sec. 27
do | Apr. 12, 1944
Sept. 7, 1943
Apr. 11, 1944
Sept. 6, 1943
Apr. 18, 1944 | | 4
3
3
3
1.5 | 65
66
66
63
63 | | 3201
3202
3203
3204
3205 | 18-35.
18-35.
18-36.
18-37.
18-37. | NE¼SW¼ sec., 27
do
SE¼NW¼ sec., 27
dodo | Sept. 6, 1943
Apr. 18, 1944
Sept. 7, 1943
do
Apr. 12, 1944 | | 2
. 25
1
8
2 | 75
59
65
67
66 | | 3206
3207
3208
3209
3210 | 18-38.
18-38.
18-38.
18-39. | NW¼SW¼ sec. 27
do
do
do
do | Mar. 29, 1943
Sept. 6, 1943
Apr. 18, 1944
Mar. 29, 1943
Sept. 6, 1943 | 29. 3
29. 3
29. 3
15. 8
15. 8 | 10
4
10
8 | 61
61
64 | | 3211
3212
3213
3214
3215 | 18-39
18-40
18-40
18-40
18-41 | do
do
do
sel_nwl/sec. 27 | Apr. 18, 1944
Mar. 30, 1943
Sept. 6, 1943
Apr. 18, 1944
Sept. 6, 1943 | 15.8
18.3
18.3
18.3 | 10
5
8
6
8 | 61
74
60
63 | | 3216
3217
3218
3219
3220 | 18-41 | do
dododododo | Apr. 18, 1944
Mar. 30, 1943
Sept. 6, 1943
Apr. 18, 1944
Sept. 7, 1943 | 18. 1
18. 1
18. 1 | 6
5
8
5 | 65
 | | 3221
3222
3223
3224
3225 | 18-44 | SW¼NE¼ sec. 27
do
NW¼SW¼ sec. 27_
do
do | Apr. 11, 1944
Mar. 30, 1943
Sept. 6, 1943
Apr. 18, 1944 | 23
23
23
23 | 5
5
8
4 | 66
66
 | | 3226
3227
3228
3229
3230 | 18-46 | SW¼NW¼ sec. 27dododododo | Sept. 7, 1943
Apr. 12, 1944
Sept. 7, 1943
Apr. 12,
1944
Sept. 7, 1943 | | 8
2
8
5
8 | 74
60
70
62
66 | | 3231
3232
3233
3234
3235 | 18-48 | do
NE¼NW¼ sec. 27
dodo
dodo | Apr. 12, 1944
Oct. 7, 1943
Apr. 12, 1944
Sept. 7, 1943
Apr. 12, 1944 | | 4
8
5
8
5 | 65
67
64
66
65 | [Analyses in parts per million] Specific conductance ance (K×10° at 25° C.) ĖΩ Dissolved Percent sodium Total hardness as CaCO3 and p (Na+1 Bicarbonat (HCO₃) (NO3) solids (Ca) (*OS) ē Borate (BO₃) Magnesium (Mg) Ξ Analysis No. Tons per acre-foot Parts per million Sodium ; Chloride Fluoride Calcium Sulfate (Nitrate 1,660 2,850 1,680 621 412 110 871 433 566 646 1.3 1.0 2.5 3,910 5 32 1.480 56 3176 3177 1,070 705 3178 554 1, 210 3179 3, 340 1,190 3180 1,030 2,750 1,065 3,190 3181 3182 442 1,120 3183 439 3184 493 1,260 3185 1,460 3186 572 1, 420 2, 900 2, 070 1, 490 551 412 3187 1, 130 852 672 3188 3189 1,050 292 1, 180 556 1,000 1,0 5.92 71 664 79 30 4.5 4,350 3190 673 758 728 912 1, 790 2, 060 2, 000 2, 570 1, 135 3191 3192 3193 3194 456 3195 499 3196 1,280 1, 800 1, 530 2, 475 2, 420 3197 3198 681 595 327 97 896 428 624 1.7 1.0 1. 5 3,690 5, 02 1, 220 62 923 953 3199 3200 333 3201 770 1,630 3202 617 1, 460 1, 590 1, 440 3203 551 613 3204 550 3205 1, 100 2,850 2,425 1,860 1,600 661 3206 959 534 1.352 6,330 8. 61 1,933 64 3207 1,560 29 146 580 795 3208 393 112 848 456 628 2.0 3, 810 5. 18 1,442 56 3209 1,050 3, 020 3210 764 319 490 2,020 1,110 1.0 135 516 886 .8 2.5 4,900 6.66 1,780 58 3211 340 705 3212 3213 516 1, 320 602 396 108 826 432 630 . 9 3,740 5.09 56 3214 1,570 1.0 1,430 604 1,580 3215 723 256 1,970 3216 33 391 324 120 242 540 1.3 2.0 2.0 1,489 2, 03 435 66 3217 3218 450 1, 100 504 540 1, 290 3219 3221 524 1,330 1,280 509 3222 3223 2, 270 2, 700 2, 460 857 553 159 1, 200 534 963 7. 36 2,034 56 3.0 5, 410 988 3224 570 159 1. 520 600 1,340 6, 370 951 . 7 26 4.5 8, 66 2,080 61 -3225 195 300 3226 1, 560 1, 125 1, 380 1, 500 590 415 125 745 464 581 1.0 1.0 . 5 4. 99 1, 550 51 3, 670 3227 444 536 3228 366 94 699 374 541 1.0 . 5 3, 270 4.45 1, 300 54 3229 .1 588 3230 698 432 1,010 441 3231 116 716 850 1.3 1.0 4,330 1,530 59 .1 5.89 653 1,690 1,770 3232 . 2 675 400 106 986 440 689 1.3 1.0 4, 170 5. 67 1,430 60 3233 545 390 528 , 340 3235 Chemical character of ground waters in the Gila River Basin, Graham County, Ariz., road bridge | | | ı | т | 1 | | | |--------------------------------------|--|--|---|----------------------|-------------------------------|----------------------------| | Analysis No. | Source | Location | Date sampled | Depth of well (feet) | Yield (gallons
per minute) | Temperature (°F.) | | 3236
3237
3238
3239
3240 | Driven observation well—Con,
18-52 | SW1/4NW1/4 sec. 27
do
NW1/4NW1/4 sec. 27
do | Sept. 7, 1943
Apr. 12, 1944
Sept. 7, 1943
Apr. 12, 1944
Sept. 7, 1943 | | 8885 | 65
64
67
63 | | 3241
3242 | 18-54
18-54
18-55 | do | | | 8
6
8 | 67
65
62
64 | | 3243
3244
3245 | 18-55.
18-56.
18-56. | do | Apr. 12, 1944
Sept. 7, 1943
Apr. 12, 1944
Sept. 7, 1943
Apr. 12, 1944 | | 8
5
8 | 69
65
62 | | 3246
3247
3248
3249
3250 | 18-57
18-57
18-58
18-58
18-59 | dododododo | Sept. 7, 1943
Apr. 12, 1944
Sept. 6, 1943
Apr. 12, 1944
Oct. 7, 1943 | | 3
1
1. 5
8 | 62
74
67
68 | | 3251
3252
3253
3254
3255 | 18-59 | do
do
do
SE¼NE¼ sec. 27 | Apr. 12,1944
Oct. 7,1943
Apr. 12,1944
Sept. 7,1943
Apr, 11,1944 | | 8 8 6 3 2 | 66
63
67
66
66 | | 3256
3257
3258
3259
3260 | 18-70 | dodoswi/NE1/sec. 27dodo | Sept. 8, 1943
Apr. 11, 1944
Oct. 7, 1943
Apr. 12, 1944
Sept. 8, 1943 | | 8
10
8
4
6 | 67
68
69
68
74 | | 3261
3262
3263
3264
3265 | 18-72
18-73.
18-73.
18-74. | dodododododododododo | Apr. 11, 1944
Sept. 8, 1943
Apr. 11, 1944
Sept. 8, 1943
Apr. 11, 1944 | | 2
2
. 5
4
5 | 75
75
73
74
74 | | 3266
3267
3268
3269
3270 | 18-75.
18-75.
18-77.
18-77.
18-86. | do | Sept. 7, 1943
Apr. 12, 1944
Sept. 8, 1943
Apr. 12, 1944
Oct. 7, 1943 | | 8
5
1
1
8 | 69
66
72
68
65 | | 3271
3272
3273
3274
3275 | 18-86. Ben Montierth stock well. Wendell Montierth domestic well. Elliot Montierth irrigation well Driven observation well, 18-51. | do | Apr. 18, 1944
Feb. 25, 1942
do
May 3, 1943
Sept. 7, 1943 | 30 | 2
420
8 | 66 | | 3276
3277
3278
3279
3280 | do | do | Apr. 12.1944
Sept. 7.1943
Apr. 12.1944
Sept. 7.1943
Apr. 12,1944 | | 3
. 5
. 25
3 | 63
77
64
64
63 | | 3281
3282
3283
3284
3285 | 19-3
19-3
19-4
19-4
19-7 | NE¼NE¼ sec. 28 | Sept. 7, 1943
Apr. 12, 1944
Sept. 7, 1943
Apr. 12, 1944
Mar. 29, 1943 | 24.2 | 8
4
3
2 | 67
64
62
64 | | 3286
3287
3288
3289
3290 | 19-7
19-7
19-8
19-8 | do | Sept. 6, 1943
Apr. 18, 1944
Sept. 6, 1943
Jan. 7, 1944
Apr. 18, 1944 | 24.2
24.2 | 8
8
8
2
3 | 65
65
65
65 | | 3291
3292
3293
3294
3295 | 19-9
19-9
19-10
19-10
19-13 | | Sept. 6, 1943
Apr. 18, 1944
Sept. 7, 1943 | 18.5 | 6
8
3
12 | ଃଷ୍ଟ୍ର
63
67
63 | between the mouth of Bonita Creek near Solomonsville and the Southern Pacific Railat Calva—Continued [Analyses in parts per million] | nduct-
(10° at | 38) | ۵ | a+K) | nate | 3 | e e | 6 | (°C) | 35 | Disso | olved
ids | ness)3 | Jium | 0.0 | |--|--------------|-------------------|----------------------------------|--------------------|------------------|--|--------------|---------------|--------------|----------------------|-----------------------|--|----------------|--------------------------------------| | Specific conduct-
ance (KX10° at
25° C.) | Calcium (Ca) | Magnesium
(Mg) | Sodium and po-
tassium (Na+K) | Bicarbonate (HCO3) | Sulfate (SO4) | Chloride (Cl) | Fluoride (F) | Nitrate (NOs) | Borate (BOs) | Parts per
million | Tons per
acre-foot | Total hardness
as CaCO ₃ | Percent sodium | Analysis No. | | 387
509 | | | | | | 945 | |
 | | | | | | 3236 | | 711
760
643 | | | | | | 1, 280
1, 960
2, 060
1, 670 | | | | | | | | 3236
3237
3238
3239
3246 | | 607
578
567
568 | | | | | | 1,540
1,460
1,430 | | | | | | | | 3241
3242
3243 | | 526 | | | | | | 1,330 | | | | | | | | 3243
3244
3244 | | 665
757
604
547
617 | | | | | | 1,700
2,010
1,600
1,390
1,600 | | | | | | | | 3247
3248 | | | 276 | 71 | 851 | 384 | 527 | | 2. 2 | 4,0 | . 5 | 3, 310 | 4. 50 | 981 | 65 | 3244 | | 600
665
620
473
508 | | | | | | 1,570
1,800
1,640
1,270
1,320 | | | | | | | | 3251
3252
3253
3254
3254 | | 508
506
482 | 290 | 78 | 715 | 255 | 503 | | 1.4 | . 5 | .2 | 3, 030 | 4.12 | 1, 040 | 60 | 3255
3256
3257 | | 516
527
773 | 270 | 84 | 1, 305 | 281
259 | 456 | 1, 340
1, 230
1, 390
1, 400
2, 240 | 3.9 | 1.0 | 7. 5 | 4, 490 | 6. 11 | 1, 020 | 74 | 3257
3258
3259
3260 | | 753
850
802 | | | | 76 | 499 | 2, 180
2, 600 | 3.9 | | | | | | | 3261 | | 802
872
841 | 251 | 86 | 1,510 | 290
318 | 544
496 | 2, 390
2, 540
2, 460 | 3.8 | 1.5 | .5 | 4, 960 | 6. 75 | 980 | 77 | 3262
3263
3264
3265 | | 548
550 | | | | | | 1, 350
1, 450 | | | | | | | | 3266
3267 | | 550
731
661
619 | | | | | | 1, 880
1, 450 | | | | | | | | 3268
3269
3270 | | 462
370
172 | | | | | | 1,000
840
352 | | | | | | | | 3271
3272
3273 | | 300
535 | 250 | 56 | 295 | 124 | 391 | 352
700 | | | | 1, 753 | 2.38 | 854 | 43 | 3273
3274
3275 | | 481
529
673
600
605 | | | | | | 1, 200
1, 380
1, 770
1, 580
1, 580 | | | | | | | | 3276
3277
3278 | | | 318
332 | 90
99 | 896
896 | 317
411 | 593
590 | | 1.8
1.8 | .5 | 4.0 | 3, 640
3, 700 | 4. 95
5. 03 | 1, 164
1, 240 | 63
61 | 3278
3279
3280 | | 724
673
760
670
644 | 356 | 97 | 1,060 | 472 | 722 | 1, 880
1, 740
2, 120
1, 780 | 1.7 | .5 | 1.0 | 4, 210 | 5. 73 | 1, 290 | 64 | 3281
3282
3283
3284 | | 702 | | | | 400 | | 1,000 | | | | | | | | 3284
3285
3286 | | 818
681
817 | 468
 |
128
152 | 1,300 | 466
489 | 1, 180
1, 020 | 2, 040
1, 730
2, 170
2, 270 | .7 | 35
14 | 2. 0
9. 0 | 5, 380
5, 310 | 7.32 | 1, 690
2, 130 | 62
53 | 3287
3288
3289
3290 | | 861
718
580 | 374 | |
<u>824</u> | 382 | 619 | 1 860 | 1.0 | . 5 |
.i | 3, 650 | 4.96 | 1, 340 | 57 | | | 844
701
456 | 292 | 75 | 1, 250 | 476
418 | 686 | 1, 540
2, 320
1, 870
1, 025 | 2.9 | .5 | .5 | 4, 410 | 6.00 | 1, 040 | 72 | 3291
3292
3293
3294
3295 | | Analysis No. | Source | Location . | Date sampled | Depth of well (feet) | Yield (gallons
per minute) | Temperature (°F.) | |--------------------------------------|---|---|---|---|-------------------------------|----------------------------| | 3296
3297
3298
3299
3300 | Driven observation well—Con. 19-13. 19-13. 19-14. 19-14. 19-15. | NW¼NE¼ sec. 28dododododododo | Sept. 4, 1943
Apr. 18, 1944
Sept. 4, 1943
Apr. 18, 1944
Sept. 7, 1943 | 18. 5
18. 5 | 86856 | 66
60
63
55
69 | | 3301
3302
3303
3304
3305 | 19-15 | do
NW¼NE¼ sec. 28do
dodo | Apr. 14, 1944
Sept. 4, 1943
Apr. 18, 1944
Mar. 30, 1943
Sept. 4, 1943 | 18. 6
18. 6 | 5
8
5
1
4 | 64
65
64
63 | | 3306
3307
3308
3309
3310 | 19-20 | dododo | Apr. 18, 1944
Sept. 7, 1943
Apr. 12, 1944
Sept. 6, 1943
Apr. 18, 1944 | 18. 6 | .5
4
1.5
8 | 58
71
65
65
66 | | 3311
3312
3313
3314
3315 | 19-66 | do
do
NW¼NE¼ sec. 28
NW¼NW¼ sec. 28
do | Oct. 7, 1943
Apr. 18, 1944
Sept. 4, 1943
do
Nov. 2, 1943 | | 82885 | 65
63
65
66
67 | | 3316
3317
3318
3319
3320 | 19-70 | dod | Jan. 5, 1944
Mar. 2, 1944
Apr. 19, 1944
July 11, 1944
Aug. 30, 1944 | | 3
4
3
4 | 66
66
67
67 | | 3321
3322
3323
3324
3325 | Ben Montierth irrigation well do | NW¼SE¼ sec. 29 | July 31, 1940
July 16, 1941
June 8, 1940
July 16, 1941
Apr. 14, 1943 | 83
83
90
90 | 850
760
710 | 70
69
69
70
69 | | 3326
3327
3328
3329
3330 | Ned Curtis stock welldo | NEL/NEL/ sec 34 | Aug. 30, 1940
Sept. 7, 1943
Mar. 29, 1940
July 1, 1941
Feb. 25, 1942 | 45
45
77 | | 69
68 | | 3331
3332
3333
3334
3335 | Driven observation well, 18-1dododo18-218-2 | NEL/NEL/ con 34 | Mar. 29,1943
Sept. 7,1943
Apr. 11,1944
Mar. 29,1943
Sept. 7,1943 | 18. 5
18. 5
18. 5
18. 5
18. 5 | 18
8
6
10
8 | 65
63
64 | | 3336
3337
3338
3339
3340 | 18-2
18-2
18-2
18-2
18-2 | do | Oct. 28, 1943
Jan. 5, 1944
Mar. 2, 1944
Apr. 25, 1944
July 10, 1944 | 18. 5
18. 5
18. 5
18. 5
18. 5 | 15
10
10
10
8 | 65
64
62
63
64 | | 3341
3342
3343
3344
3345 | 18-2
18-2
18-3
18-3 | do
do | Aug. 29, 1944
Oct. 30, 1944
Mar. 29, 1943
Sept. 7, 1943
Apr. 11, 1944 | 18. 5
18. 5
13. 3
13. 3
13. 3 | 12
10
18
1 | 65
65
65
63 | | 3346
3347
3348
3349
3350 | 18-4 | do
do
8E¼NE¼ sec. 34 | Mar. 29, 1943
Sept. 7, 1943
Apr. 11, 1944
July 27, 1943
Apr. 11, 1944 | 17. 7
17. 7
17. 7 | 5
8
8
2
6 | 63
62
65
64 | | 3351
3352
3353
3354
3355 | 18-8
18-8
18-8
18-11
18-11 | NW¼NE¼ sec. 34dododododododo. | Mar. 30, 1943
Sept. 6, 1943
Apr. 11, 1944
Mar. 29, 1943
Sept. 6, 1943 | 18. 5
18. 5
18. 5
18. 7
18. 7 | 10
8
10
. 25 | 63
61
66 | between the mouth of Bonita Creek near Solomonsville and the Southern Pacific Railat Calva—Continued [Analyses in parts per million] | | | | | | | ъ ш ре | | | | | | | | | |--|--------------|-------------------|----------------------------------|--------------------------|----------------|--|--------------|---------------|--------------|--------------------------|--------------------|----------------------------|----------------|--------------------------------------| | Specific conduct-
ance (KX10 ⁸ at
25 °C.) | Calcium (Ca) | Magnesium
(Mg) | Sodium and po-
tassium (Na+K) | Bicarbonate
(HCO3) | Sulfate (SO4) | Ohloride (Cl) | Fluoride (F) | Nitrate (NO3) | Borate (BOs) | Parts per million essign | Tons per acre-foot | Total hardness
as CaCOs | Percent sodium | Analysis No. | | Spec | Calc | Mag | Sodi | Bic | Sulfa | СЪ | Fluc | Nitr | Bors | Part
mil | Tons | Tote | Perc | Ana | | 647
613
539 | | |
 | · | | 1,320
1,550 | | | | | | | | 3296
3297
3298 | | 526
892 | 300 | 79 | 775 | 386 | 541 | 1, 090
1, 330
2, 600 | 1.0 | . 5 | .2 | 3, 220 | 4.38 | 1,070 | 61 | 3299
3300 | | 803
750
642 | 305 | 83 | 1, 410 | 389
481 | 594
939 | 2, 290
1, 890
1, 600 | 3.0
1.2 | .5 | 5.0 | 4, 880 | 6. 64 | 1, 100 | 74 | 3301
3302
3303 | | 522
431 | 288 | 80 | 773 | 434 | 602 | 1, 235
1, 005 | 1.1 | 2.0 | 3.5 | 3, 190 | 4.34 | 1,048 | 62 | 3304
3305 | | 322
493
668
933
816 | 462 | 123 | 893 | 424 | 711 | 1, 285
1, 780
2, 340
2, 010 | .9 | . 5 | .1 | 4, 180 | 5. 68 | 1, 660 | 54 | 3306
3307
3308
3309
3310 | | 685
782
933
287 | 20 | 8. 5 | 1,890 | 1,330 | 738 | 1,360
1,630
2,420
625 | 14 | 12 | 5. 0 | 4, 970 | 6, 76 | 85 | 98 | 3311
3312
3313 | | 287
334
383 | 127 | 37 | 564 | 268 | 367 | 760
880 | 1.4 | 23 | 15 | 2,010 | 2. 73 | 469 | 72 | 3314
3315
3316 | | 440
444
482 | 212 | 55 | 729 | 523 | 469 | 995
990
1,085 | .8 | 22 | 2.0 | 2, 740 | 3. 73 | 755 | 68 | 3317
3318
3319 | | 507
46 | 280 | 67 | 761 | 310
156 | 623
48 | 1, 210 | 1.0 | 22
1. 2 | 2.0 | 3, 120 | 4. 24 | 974
172
261 | 63 | 3320
3321
3322 | | 69. 6
35
34. 8
37. 9 | 70
41 | 7. 9 | 53
21 | 164
151
148
150 | 98
20
40 | 97
13
11
17 | .6 | 2.0 | | 195 | . 57 | 261
142
135 | 31
25 | 3322
3323
3324
3325 | | 1,340
557 | 632 | 251 | 2, 327 | 168 | 1, 667 | 4, 110
1, 190 | | | | 9, 070 | 12. 3 | 2, 620 | 66 | 3326
3327 | | 38
182
433 | 193 | 42 | 130 | 127
170 | 36
249 | 28
378
960 | 5 | 1. 2
5. 0 | | 1, 081 | 1. 47 | 93
654 | 30 | 3328
3329
3330 | | 752
595
582
1,010 | 344
 | 82 | 1, 273 | 548

628. | 925 | 1,780
1,350
1,310
2,650 | | 51
 | | 4, 720 | 6. 42 | 1, 196 | 70
 | 3331
3332
3333
3334 | | 923
891 | 512 | 152 | 1, 440 | 628 | 1,090 | 2, 425 | .7 | 23 | 12 | 5, 920 | 8. 05 | 1,900 | 63 | 3335
3336 | | 889
869
858
868 | | | | | | 2, 390
2, 320
2, 250
2, 200
2, 200 | | | | | | | | 3337
3338
3339
3340 | | 876
992
835 | | | | 570 | | 2, 250
2, 650
2, 010 | | | | | | | | 3341
3342
3343 | | 734
684 | | | | | | 1,730
1,550 | | | | | | | | 3344
3345 | | 1, 050
936
838
592
546 | 432
228 | 131
64 | 1,410
1,080 | 672
601
502 | 1,110
827 | 2, 770
2, 400
2, 120
1, 320
1, 170 | .8
1.2 | 40
52 | 3. 5
7. 0 | 5, 540
3, 820 | 7. 53
5. 20 | 1, 620
832 | 65
74 | 3346
3347
3348
3349
3350 | | 952
912
759 | | | | 604 | | 2, 400
2, 300
1, 840 | | - | | | | | | 3351
3352
3353 | | 644
570 | | | | 468 | | 1, 620
1, 260 | | | | | | | | 355 4
335 5 | | Analysis No. | Source | Location | Date sampled | Depth of well (feet) | Yield (gallons
per minute) | Temperature (°F.) | |--|---|---|--|------------------------------|-------------------------------|----------------------------| | 3356
3357
3358
3359
3360 | Driven observation well—Con. 18-11. 18-79. 18-79. 18-79. 18-79. | NW¼NE¼ sec. 34
SW¼NE¼
sec. 34
dodo | Apr. 11, 1944
Sept. 7, 1943
Nov. 2, 1943
Jan. 5, 1944
Mar. 2, 1944 | 18.7 | 2
8
10
8
12 | 62
67
66
66
64 | | 3361
3362
3363
3364
3365 | 18-79 | do
do
do
SE¼NE¼ sec. 34 | Apr. 18, 1944
July 10, 1944
Aug. 29, 1944
Oct. 30, 1944
Sept. 7, 1943 | | 6
6
7
6 | 63
63
65
66
64 | | 3366
3367
3368
3369
3370 | 18-80.
18-81.
18-81.
18-82.
18-82. | do
do
NW¼NE¼ sec. 34do | Apr. 18, 1944
Sept. 7, 1943
Apr. 18, 1944
Sept. 7, 1943
Apr. 18, 1944 | | 8
8
4
2 | 62
64
65
64
63 | | 3371
3372
3373
3374
3375 | 18-83 | SE¼NE¼ sec. 34
do | Sept. 7, 1943
Apr. 18, 1944
Jan. 17, 1941
June 7, 1940
Nov. 5, 1943 | 34
21
21 | 4
6 | 65
65
64
65 | | 3376
3377
3378
3379
3380 | USGS 99 | do
NW4SW4 sec. 35
SW4SW4 sec. 35
SE4SE4 sec. 35
NE4SE4 sec. 35 | May 30, 1940
Feb. 25, 1942
June 23, 1941
July 19, 1940
Sept. 12, 1941 | 12
50
60
50. 5 | 450
2 | 65 | | 3381
3382
3383
3384
3385 | Driven observation well, 17-6 | SE¼NE¼ sec. 35 do NE¼NE¼ sec. 35 do NE¼SE¼ sec. 35 | Sept. 9, 1943
 | | 3
4
8
2
8 | 79
75
82
78
75 | | 3386
3387
3388
3389
3390 | 17-15.
17-16.
17-17.
17-18.
17-19. | NE¼SW¼ sec. 35_
NE¼SE¼ sec. 35_
SE¼NE¼ sec. 35_
do
NW¼NE¼ sec. 35 | | | 8
2
3
2
3 | 74
70
71
74
71 | | 3391
3392
3393
3394
3395 | 17-20
17-21
17-22
17-22
17-23 | do | Sept. 20, 1943
Mar. 26, 1943
Sept. 8, 1943
Mar. 27, 1943 | 18. 2
18. 2
18. 2 | 3
8
10
8
10 | 72
65
64 | | 3396
3397
3398
3399
3400 | 17-23 | do
do
do
do | Sept. 8, 1943
Sept. 9, 1943
Sept. 20, 1943
Mar. 26, 1943
Sept. 8, 1943 | 18. 2

18. 7
18. 7 | 8
8
8
15
8 | 64
67
63
63 | | 3401
3402
3403
3404
3405 | 17-27 | do | Sept. 20, 1943
Mar. 27, 1943
Sept. 20, 1943
Mar. 17, 1943 | 18. 4
18. 4
18. 2 | 3
8
1
8
1 | 67
64
64 | | 3406
3407
3408
3409
3410 | 17-30
17-31
17-31
17-32
17-33 | do | Sept. 7, 1943
Mar. 27, 1943
Sept. 7, 1943
Sept. 8, 1943
Mar. 27, 1943 | 18. 2
15. 8
15. 8 | 4
5
8
1
2 | 69
73
72 | | 3411
3412
3413
. 3414
3415 | 17-33
17-34
17-36
17-36
17-37 | do
do
dododo | Sent. 7, 1943 | 22.8
18.4
18.4
18.5 | 1
8
12
8
15 | 67
74
66 | between the mouth of Bonita Creek near Solomonsville and the Southern Pacific Railat Calva—Continued [Analyses in parts per million] | [Analyses in parts per million] | | | | | | | | | | | | | | | |--|--------------------------------------|---------------------|-----------------------------|------------------------------------|---------------|--------------------------------------|--------------|--------------------|---------------------------|----------------------|-----------------------|--|----------------|-------------------------------------| | Specific conduct-
ance (KX10 ^s at
25° C.) | (Ca) | mt) | Sodium and potassium (Na+K) | Bicarbonate
(HCO ₃) | (*08. | (CI) | (F) | (NO ₃) | BO ₃) | sol | olved
lids | rdness
CO3 | sodium | No. | | Specific
ance (1
25° C.) | Calcium (Ca) | Magnesium
(Mg) | Sodium | Bicarb
(H(| Sulfate (SO4) | Chloride (Cl) | Fluoride (F) | Nitrate (NO3) | Borate (BO ₂) | Parts per
million | Tons per
acre-foot | Total hardness
as CaCO ₃ | Percent sodium | Analysis No. | | | | | | | | 1.000 | | | | | | | | 0000 | | 565
557
556
506 | 218 | 61 | 1, 020 | 545 | 804 | 1, 250
1, 170
1, 200
1, 080 | 1. 2 | 53 | 14 | 3. 630 | 4.94 | 795 | 74 | 3356
3357
3358
3359 | | 466
443 | 141 | 42 | 827 | 496 | 600 | 965
890 | 1.3 | 41 | 1.0 | 2, 790 | 3. 79 | 524 | 78 | 3360
3361 | | 372
387 | | | | | | 700
750 | | | | 2, 190 | 3. 19 | | | 3362
3363 | | 391
594 | | | | | | 745
1, 280 | | | | | | | | 3364
3365 | | 560
547
313 | | | | | | 1, 180
1, 170 | | | | | | | | 3366
3367 | | 461
391 | 114 | 34 | 730 | 426 | -506 | 580
1,000
785 | 1.8 | 31 | 2.0 | 2, 410 | 3. 28 | 424 | 79 | 3368
3369
3370 | | 554
434 | 114 | | 750 | 480 | -300 | 1 170 | 1.0 | 91 | 2.0 | 2, 410 | 0.20 | 721 | - | 3371 | | 552
850 | 548 | 106 | 529 | 306 | 903 | 865
1, 250
2, 328
2, 080 | .4 | | | 3, 490 | 4. 75 | 1, 803 | 39 | 3372
3373
3374 | | 781
820 | | | | | | I | | | | | | | | 3375 | | 524 | 45 | 11 | 117 | 176 | 69 | 2, 158
1, 180
135 | .8 | 5. 0 | | 470 | . 64 | 158 | 62 | 3376
3377
3378
3379 | | 84. 1
1, 300
507 | 162 | 42 | 905 | 518
319 | 2, 500
411 | 2, 950
1, 310 | 3.0 | 2.0 | | 2, 990 | 4. 07 | 1,365
577 | 77 | 3379
3380 | | 525
559 | | | | 269 | | 1, 420 | | | | | | | | 3381
3382 | | 517
434
503 | | | | 206
133
279 | | 1, 440
1, 230
1, 250 | | | | | | | | 3383
3384
3385 | | 860 | | | | | | 2 400 | | | | | | | | 3386
3387 | | 1,000
1,200 | | | | 491 | 1, 029 | 2, 850
3, 490
2, 480 | | | | | | | | 3387
3388
3389 | | 831
754 | | | | | | 2, 480
2, 090 | | | | | | | | 3389
3390 | | 591
1, 450 | | | | | | 1,670
4,510 | | | | | | | | 3391
3392
3393 | | 1,560
1,550 | 1,009 | -298 | 2, 266 | 384 | 1, 591 | 4, 510
4, 750
4, 730 | | | | 10, 100 | 13. 7 | 3, 740 | 57 | 3394 | | 1, 570
1, 770 | 1, 077 | 382 | 2, 790 | 539
538 | 2, 119 | 4, 630
5 440 | 1.6 | | 7.4 | 12, 100 | 16. 5 | 4, 258 | 59 | 3395
3396 | | 1.500 | | | | | | 5, 440
4, 500
4, 400 | | | | | | | | 3397
3398 | | 1,510
1,290
1,330 | | | | 586
 | | 3, 580
3, 660 | | | | | | | | 3399
3400 | | 1, 080
1, 320 | | | | | | 2, 920
3, 710 | | | | | | | | 3401
3402 | | 1, 080
1, 370
586 | | | | 378 | | 3,040
3,960 | | | | | | | | 3403
3404 | | | | | | 476 | | 1, 455 | | | | | | | | 3405 | | 826
475
577 | 245 | 66 | 700 | 382 | 434 | 2, 260
1, 160
1, 480 | 1.4 | 1.0 | 1.5 | 2, 800 | 3. 81 | 883 | 63 | 3406
3407
3408 | | 529
644 | | | | 348 | | 1, 480
1, 690 | | | | | | | | 3409
3410 | | 735
431
717 | | | | 212 | 654 | 2, 080
1 040 | | | | | | | | 3411
3412 | | 777 | 390 | -114 | 1, 258
1, 236 | 630
· 578 | 883
-846 | 1, 040
1, 790
1, 970
2, 170 | | 8.7. | | 4, 910
5, 210 | 6. 68
7. 09 | 1, 442
1, 790 | 65 | 3413
3414 | | - 842 · I | 495 ¹ .
-7 9751 | <u>13</u> 5 ∣
50 | 1,236
14 | • 642 | -846 | 2, 170 | | 14 | | 5, 210 | 7.09 | 1,790 | 60 I | 3415 | Chemical character of ground waters in the Gila River Basin, Graham County, Ariz., road bridge | O Date sampled Liest) No. | Yield (gallons per minute) | Temperature
(°F.) | |--|----------------------------|----------------------| | ▼ | | | | Driven observation well—Con. NE¼NW¼ sec. 35. Sept. 7, 1943 18. | 5 8 | 68 | | 3417 17-38 Mar. 27, 1943 18. | 2 5 | 68 | | 3419 17-42dodo | .5 | 68
69 | | 1. 2020.20 | | 00 | | 3421 17-45 NW¼NW¼ sec. 35 Mar. 30,1943 18.
3422 17-45 do Sept. 7,1943 18. | | 68 | | 3424 17-46 Sept. 7, 1943 18. | 4
3
3
8
2 | 66
66 | | 1 1 | 1 | | | 3426 17-49doMar. 29,1943 13.
3427 17-49doSept. 7,1943 13.
3428 17-59SE½/NW½ sec. 35Sept. 20,1943 | 8 | 64
64 | | 3429 17-59 Nov. 2, 1943 | 8
8
5 | 65
64 | | 3430 17-59 Jan. 5, 1944 | - | 65 | | 3431 17-59 do Mar. 2, 1944 do July 10, 1944 | 8
3
5 | 64
64 | | 3433 17-59 do Aug. 29, 1944 | 6 | 64 1 | | | 8 | 62 | | 3436 17-60 do Nov. 2, 1943 | 15
12
12 | 65
66 | | 3439 17-60 do July 10, 1944 | _ 5 | 65
64 | | 3440 17-60 Aug. 29, 1944 |
- 6 | 64 | | 3441 17-60 do Oct. 30, 1944 3442 17-63 SE¼SE¼ sec. 35 Sept. 8, 1943 3443 17-63 do Sept. 30, 1944 Nov. 2, 1943 Nov. 2, 1943 | - 6
8 | 65
66 | | 3444 17-63 | 8
10 | 66
67 | | | 8 | 67 | | 3446 17-63doMay 3, 1944 | 6
8
5
6
3 | 67
66 | | 3448 17-63 do | - 5
6 | 67
67 | | 3450 17-63 Oct. 30, 1944 | | 68 | | 3451 17-64 do Sept. 8, 1943 3452 17-65 SW¼NW¼ sec. 35 Sept. 11, 1943 | 8
8
3
1.5 | 66
65 | | 2452 17_66 NW1/SW1/ sec. 35 Sept. 7, 1943 | 3 | 64
66 | | 3455 17-66 Jan. 5, 1944 | 1 | 63 | | 3456 17-66 | 1 | 62
62 | | 3457 17-66do Apr. 25, 1944
3458 17-66do July 10, 1944
3459 17-66do Aug. 29, 1944 | 1 1.5 | 66
66 | | 3459 17-66 | 2 | 66 | | 3461 17-67 NE1/SW1/2 sec. 35 Sept. 7, 1943 SW1/2 sec. 36 Sept. 9, 1943 S | 5
3 | 68
78 | | 3463 17-2 do Mar. 26, 1943 20. | 1.5 | 71 | | 3464 17-2 do Sept. 8,1943 20.1
3465 17-3 NW¼SW¼ sec. 36 Sept. 18,1943 | 8 | 76 | | 3466 17-3 Nov. 2, 1943 | 5
6 | 76
69 | | 3467 17-3 do Jan. 6,1944 | 5 | 66
65 | | 3469 17-3do Mar. 1,1944
3470 17-3do May 3,1944 | . 4 | 67 | | 3471 17-3 July 10, 1944 | 6 | 73
76
74 | | 3472 17-3 do Aug. 29, 1944 3473 17-3 do Oct. 27, 1944 3474 17-4 do Sept. 9, 1943 3475 17-5 do Sept. 18, 1943 | . 8
. 6 | 74 | | 3474 17-4 do Sept. 9, 1943 do Sept. 18, 1943 | - 1 | 70
74 | between the mouth of Bonita Creek near Solomonsville and the Southern Pacific Railat Calva—Continued [Analyses in parts per million] | [Analyses in parts per minon] | | | | | | | | | | | | | | | |---------------------------------------|--------------|-------------------|-----------------------------|------------------------------------|---------------|--------------------------------------|--------------|----------------------------|--------------------|----------------------|-----------------------|----------------------------|----------------|------------------------------| | Specific conductance (KX10 at 25° C.) | Ca) | a | Sodium and potassium (Na+K) | Bicarbonate
(HCO ₃) | (†0 | (c) | (F) | (03) | (BO ₃) | Disso | olved
ids | Total hardness
as CaCOs | Percent sodium | , o. | | C. Ke | Calcium (Ca) | Magnesium
(Mg) | 88 | HCH | Sulfate (SO4) | Chloride (Cl) | Fluoride (F) | Nitrate (NO ₃) | e (B | Parts per
million | Tons per
acre-foot | har | nt sc | Analysis No. | | peci
anc
25° |)alciı | Aagr
(N | odiu | ica | ulfa | hlor | luor | litra | Borate | arts | ons | otal | erce | naly | | <u> </u> | | - | 02.43 | | | | | | <u> </u> | <u> </u> | F | | | ₹ | | 756 | | | } | | | | | | | | | | | 2416 | | 578
722 | | | | 474 | | 1, 455
1, 930
2, 110 | | | | | | | | 3416
3417
3418 | | 805
754 | | | | | | 2, 110
2, 140 | | | | | | | | 3419
3420 | | 765 | | | | 680 | | 1 ' | | | | | | | | | | 724
752 | | | | 482 | | 1, 890
1, 780
1, 980 | | | | | | | | 3421
3422
3423
3424 | | 817
784 | 385 | 117 | 1,304 | 660 | 979 | 2, 200
1, 910 | | 29 | | 5, 050 | 6, 84 | 1, 442 | 66 | 3424
3425 | | 900 | 550 | | | 638 | | 2 370 | | | | 0,000 | | , | 00 | 3426 | | 1, 240
863 | | | | | | 3, 410
2, 330 | | | | | | | | 3427
3428 | | 959
912 | 483 | 172 | 1,560 | 519 | 1, 180 | 3, 410
2, 330
2, 570
2, 390 | .7 | 40 | 20 | 6, 260 | 8. 51 | 1, 910 | 64 | 3429
3430 | | 1 | | | | | | 1 | | | | | | | | ı | | 891
900
955 | | | | | | 2, 340
2, 300
2, 500 | | | | | | | | 3431
3432
3433
3434 | | 989
765 | | | | | | 2,600
1,730 | | | | | | | | 3434
3435 | | 717 | 272 | 100 | 1,320 | 529 | 1, 120 | 1, 620 | .3 | 90 | 20 | 4, 780 | 6.50 | 1,090 | 72 | 3436 | | 505
362 | 142
77 | 53
31 | 990
721 | 499
416 | 756
505 | 1,050
705 | 1.1
1.4 | 56
27 | 9.0
3.0 | 3, 290
2, 270 | 4. 47
3. 09 | 572
320 | 79
83 | 3437
3438 | | 393
469 | 126 | 48 | 890 | 414 | 723 | 735
940 | 1.0 | 33 | 3.0 | 2, 960 | 4.03 | 512 | 79 | 3439
3440 | | 534 | | | | | | 1,130 | | | | | | | | 3441 | | 287
280 | | | | | | 505
495 | | | | | | | | 3442
3443 | | 252
203 | 56 | 21 | 486 | 254 | 414 | 445
340 | . 2 | 21 | 14 | 1,570 | 2.14 | 226 | 82 | 3444
3445 | | 165 | 30 | 12 | 328 | 247 | 256 | 255 | .7 | 9.8 | 2.0 | 1,010 | 1.37 | 124 | 85 | 3446 | | 178
186 | | | | | | 280
295 | | | | | | | | 3447
3448 | | 276
203 | 82 | 30 | 482 | 244 | 442 | 495
365 | .6 | 20 | 5.0 | 1,670 | 2. 27 | 328 | 76 | 3449
3450 | | 1,030 | | | | | | 2, 620 | | | | | | | | 3451
3452 | | 722
229 |
41 | 16 | 357 | 275 | 275 | 1,690
425
300 | 1.4 | 8.8 | 7.5 | 1, 130 | 1.54 | 168 | 82 | 3452
3453
3454 | | 186
167 | | | | | | 256 | | | 7. 5 | 1, 100 | 1.04 | | | 3455 | | 175 | 69 | <u>18</u> | 398 | 252 | 251 | 295
445 | 1.1 | 16 | 2 | 1, 320 | 1.80 | 246 | 78 | 3456
3457 | | 221
184
144 | 39 | 11 | 262 | 234 | 184 | 320 | 1.5 | 9. 2 | 5.0 | 846 | 1.15 | 142 | 80 | 3458
3459 | | 149 | | | | | | 224
235 | | | | | | | | 3460 | | 366
761 | 114 | 34 | 666 | 450 | 520 | 660
2, 120 | | 38 | | 2, 254 | 3.07 | 424 | 77 | 3461
3462 | | 173
662
589 | 275 | 88 | 1,059 | 258
310 | 531 | 295
1, 800 | 1.8 | .5 | 9.0 | 3, 910 | 5. 32 | 1,048 | 69 | 3463
3464 | | | | | | | | 1,620 | | | | | | | | 3465 | | 554
566 | 182 | 56 | 970 | 272 | 375 | 1,540
1,560 | 3.1 | .5 | | 3, 260 | 4. 43 | 684 | 75 | 3466
3467 | | 566
569
559 | | | | 300 | | 1,540
1,550 | | | 4. 1 | | | | | 3467
3468
3469 | | 564 | | | | | | 1, 430 | | | | | | | | 3470 | | 598
624
659 | 228 | 65 | 1,080 | 316 | 495 | 1, 630
1, 700
1, 860 | 2.6 | .5 | <u></u> | 3, 730 | 5.07 | 838 | 74 | 3471
3472
3473 | | 659
537
638 | | | | 247 | | 1,470 | | | | | | | | 3474 | | 638 | | | | ' | | 1, 820 | | | | | | | | 3475 | | Source Location Date sampled Source Location Date sampled Source Sou | | | | | | | | |--|--------------|----------------------------|--|---------------------------------|------------|-------------------------------|-------------------| | 3477 17-12 | Analysis No. | Source . | Location . | Date sampled | ## (F) | Yield (gallons
per minute) | Temperature (°F.) | | Miles Herbert unused well NW/NW/4 sec. Mar. 10, 1943 40 1,054 65 | 3476 | 17-12 | | Sept. 8, 1943 | | | 72
71 | | 3482 | | | T. 5. S., R. 23 E.:
NWL/NWL/ sec. 1 | Mar. 10 1943 | 40 | | '* | | 3483 do | 3479 | Roy Layton irrigation well | SW1/SE1/2 sec. 1 | July 23, 1940 | 64 | 1, 054 | 65 | | 2483 | 3481 | do | do | May 3, 1944 | 64 | | 63 | | 3485 do | | · | 1 | 1 | | | | | 3485 do | 3484 | do | do | Oct. 30, 1943 | | 5 | 66 | | 3487 | 3485
3486 | | | Jan. 5, 1944
Mar. 2 1944 | | 8 | 65
64 | | 16-9 | 3487 | | | May 3, 1944 | | 8 | | | 16-9 | | | | July 11, 1944 | | 8 | | | 16-9 | 3490 | do | 40 | Oct. 30, 1944 | | 5 | 66 | | 16-11 | 3491 | | NE¼SE¼ sec. 1
SE¼SE¼ sec. 1 | Sept. 9, 1943
Mar. 25, 1943 | 18.3 | 8
4 | 70 | | 10-12 | 3493 | 16-11 | do | | 18.3 | 8 | 67 | | 16-13 | 3494
2405 | 16-12 | NE¼SE¼ sec. 1 | Mar. 25, 1943 | 23.5 | 2.5 | 63 | | 10-14 | 3496 | 16-13 | | Sept. 9, 1943 | | .4 | 80 | | 10-16 | | 16-14 | SW14SW 14sec. 1 | Mar. 25, 1943 | | | | | 10-16 | | 16-14 | NEWSWW sec. 1 | Sept. 11, 1943 | 17.4
18 | | 67 | | 16-18 | 3500 | 16-15 | do | Sept. 11, 1943 | | 8 | | | 16-18 | 3501
3502 | 16-17 | NW\\se\\ sec. 1
NW\\\se\\ sec. 1 | Sept. 22, 1943
Sept. 9, 1943 | | 2 | 65 | | 3506 16-19 | 3503 | | SW14SE14 sec. 1 | Mar. 25, 1943 | | 2 | | | 3608 16-21 NE¼SE¼ sec. 1 do | 3505 | 16-19 | NW1/SE1// sec. 1 | Mar. 25, 1943 | 23. 2 | 1 | | | NE SE Sec. 1 | 3506
3507 | 16-19 | do | Sept. 11, 1943 | 23. 2 | | 73
72 | | 3512 16-22 | | | | | | - | | | 3512 16-22 | 3509 | 16-23 | SW/SE/4 sec. 1 | do | | 1 | 68 | | 3512 16-22 | | 16-25 | SEWNWW sec. 1 | do | | | 75
64 | | 16-27 | | 16-26 | do | | | 8 | | | Sept. Sept | | 16-27 | NE¼SW¼
sec. 1 | Mar. 25, 1943 | | 6 | | | Sept. Sept | 3515 | 16-28 | NW1/SW1/4 sec. 1 | Sept. 21, 1943 | | 8 | 66 | | 3518 | | 16-29
16-30 | NE¼SW¼ sec. 1
SW¼NW¼ sec. 1 | Sept. 9,1943
Mar. 26,1943 | 18.7 | | 65 | | 16-31 | 1 | 16-30 | | | | 1 | 63 | | 3521 16-32 | 3519 | 16-31 | NE¼SW¼ sec. 1 | Mar. 25, 1943 | | | | | 3522 16-33 | 3521 | 16-32 | do | Sept. 21, 1943 | | | | | 3528 16-36 | 3522 | | | Mar. 26, 1943 | | - 1 | | | 3528 16-36 | 3523
3524 | 16-33
16-34 | do
NW1/SW1/ sec 1 | Sept. 9, 1943
Mar. 27 1942 | | | 64 | | 3528 16-36 | 3525 | 16-34 | do | Sept. 9, 1943 | 23.8 | 8 ' | 64 | | | | | ao | Mar. 27, 1943
Sept. 9, 1943 | | | 64 | | | | 16-36 | SW14NW14 sec. 1 | Mar. 26, 1943 | | 1 | | | 3531 16-38 NEI/NW/ sec. 1 do 8 77
3532 16-39 NWI/SW/ sec. 1 do 8 65 | 3529
3530 | 16-36
16-37 | | Sept. 9, 1943 | 18.3 | 1 8 | 66
63 | | 3032 10-39 NW½ SW½ Sec. 1 00 | 3531 | 16-38 | NEI/NW// sec. 1 | do | | 8 | 77 | | | 3032 | 10-99 | NW%2W% Sec. 1 | | | 8 1 | 00 | between the mouth of Bonita Creek near Solomonsville and the Southern Pacific Railat Calva—Continued [Analyses in parts per million] | onduct-
X10° at | C8) | B | and po- | onate
Os) | 3 | (i) | £ | (60) | Ĉ | Disso
sol | olved
ids | iness | dium | | |--|--------------|-------------------|------------------------|---------------------------|---------------|--|------------|---------------|---------------------------|----------------------|-----------------------|----------------------------|----------------|--| | Specific conductance (KX10 at 25° C.) | Calcium (Ca) | Magnesium
(Mg) | Sodium a
tassium (A | Bicarbonate
(HCOs) | Sulfate (SO4) | Chloride (Cl) | Fluoride (| Nitrate (NOs) | Borate (BO ₃) | Parts per
million | Tons per
acre-foot | Total hardness
as CaCOs | Percent sodium | | | 526
750 | 24 5 | 73
 | 826 | 268 | 584 | 1, 330
2, 020 | 1.8 | .5 | 9.0 | 3, 190 | 4.34 | 912 | 66 | 34 | | 174
800
459
452
1, 370 | 257 | 70 | 673 | 158
468
372 | 500
420 | 295
2, 225
1, 160
1, 120 | 1.8 | 13 | ,1 | 2, 780 | 3. 78 | 1, 950
930 | 61 | 3, | | 1, 420
1, 370
1, 370
1, 380
1, 400 | 786 | 246 | 2, 270 | 520 | 1, 650 | 4, 110
4, 080
3, 980
4, 010
4, 000 | .6 | 20 | 25 | 9,310 | 12.7 | 2, 970 | 62 | 33333 | | 1, 410
1, 390
1, 380
799
692 | 415 | 112 | 1,002 | 578 | 702 | 4, 010
4, 050
4, 030
2, 150
1, 750 | | 1,0 | | 4, 270 | 5. 81 | 1, 496 | 59 | 3 3 3 3 | | 690
804
878
775
352 | | | | 532 | | 1, 750
2, 070
2, 350
2, 120
725 | | | | | | | | 33333 | | 439
525
394
1, 230
685 | | | | 452
604 | | 1,035
1,210
870
3,520
1,720 | | | | | | | | 3 3 3 3 | | 435
472
499
513
555 | - | | | 540
586
141
-548 | | 955
1,060
1,175
1,440
1,340 | | | | | | | | 33333 | | 718
428
601
868
932 | 370 | .95 | 1, 127 | 372
345
441 | 843 | 1, 830
1, 045
1, 590
2, 290
2, 600 | | 2.0 | | 4, 450 | 6. 05 | 1,314 | . 65 | 3 3 3 | | 525
477
713
1. 200 | | | | 238
452 |
 | 1, 290
1, 170
2, 000
3, 590 | | | | | | | | 3 3 3 3 3 | | 1, 240
1, 380
835
811
864 | 928 | 261 | 1,547 | 470
274 | 1, 115
800 | 3, 670
4, 310
2, 360
2, 270
2, 470
2, 720 | .9 | | 2.0 | .7,770 | 10.6 | .3,390~ | 50 | 3 3333 | | 976
1,070
1,060
1,220 | | | | 572
421
546
392 | 1,045 | 3, 120
3, 000
3, 510
1, 660 | | |
 | | | | | 3,3333 | | 1,080
1,370
1,390
1,230
784 | 1,065 | 263 | 1, 454 | . 535 | 1,185 | 3,080
4,100
4,280
3,740 | | | | 7,940 | 10.8 | 3,740 | 46 | 33333 | | 1,330 |

 | | | | | 2, 150
3, 810 | | | | | | | | 3 | | Analysis No. | Source | Location | Date sampled | Depth of well (feet) | Yield (gallons
per minute) | Temperature (°F.) | |--------------------------------------|---|---|---|----------------------------------|-------------------------------|----------------------------| | 3533
3534
3535
3536
3537 | Driven observation well—Con. 16-40 | SW¼NW¼ sec. 1dodo
NW¼NW¼ sec. 1
NE¼NW¼ sec. 1 | Mar. 26, 1943
Sept. 9, 1943
Sept. 21, 1943
Sept. 9, 1943 | 15. 3
15. 3 | 2
8
8
8
2 | 63
62
64
79 | | 3538
3539
3540
3541
3542 | 16-45 | SW¼NW¼ sec. 1do
NW¼NW¼ sec. 1do
NE¼NW¼ sec. 1 | Mar. 27, 1943
Sept. 8, 1943
Sept. 21, 1943
Sept. 8, 1943
Sept. 9, 1943 | 13. 1
13. 1 | 5
8
8
8 | 63
64
72
79 | | 3543
3544
3545
3546
3547 | 16-48 | do
dododo | Nov. 2, 1943
Jan. 6, 1944
Mar. 1, 1944
May 3, 1944
July 10, 1944 | | 15
10
10
8
6 | 79
76
73
74
77 | | 3548
3549
3550
3551
3552 | 16-48 | do | Aug. 29, 1944
Oct. 27, 1944
Mar. 27, 1943
Sept. 8, 1943
Sept. 21, 1943 | 18. 2
18. 2 | 5
4
2
8
.8 | 79
78
63
64 | | 3553
3554
3555
3556
3557 | 16-52 | do
do
NE¼SE¼ sec. 1 | Mar. 27, 1943
Sept. 8, 1943
Sept. 20, 1943
Mar. 25, 1943
Sept. 11, 1943 | 23. 9
23. 9
18. 4
18. 4 | 10
4
8
9
8 | 66
64
 | | 3558
3559
3560
3561
3562 | 16-60
18-61
Freland Palmer irrigation well
do
W. C. Rhodes domestic well | do
SW14SW14 sec. 1
SE14SE14 sec. 2
do
SE14SW14 sec. 2 | Sept. 9, 1943
July 23, 1940
Apr. 20, 1943
Aug. 16, 1940 | 50 | 8
8
645 | 64
65
67
67 | | 3563
3564
3565
3566
3567 | doRoy Layton domestic welldodoV. Tyler irrigation wellA. F. Whitmer irrigation well | do
SW¼NE¼ sec. 2
do
NE¼NE¼ sec. 2
NW¼SE¼ sec. 2 | Mar. 11, 1943
Feb. 25, 1942
Mar. 10, 1943
June 18, 1940
May 15, 1943 | 50
54 | | | | 3568
3569
3570
3 571 | A. C. Atchison domestic well. Driven observation well, 15-83. Driven deservation well, 15-83 (after deegening). | do
dose½se½sec.2
dodo | June 28, 1944
Mar. 12, 1943
June 20, 1943 | 65 | | | | 3572
3573 | 16-49 | do
SE¼NE½ sec. 2 | Sept. 9, 1943
Mar. 27, 1943 | 18. 7 | 4
10 | 65 | | 3574
3575
3576
3577 | 16-49.
16-53.
16-53.
16-54. | do
do
NE¼NE¼ sec. 2 | Sept. 8, 1943
Mar. 27, 1943
Sept. 8, 1943 | 18. 7
18. 4
18. 4 | 8
10
8
8 | 66
65
66 | | 3578
3579
3580
3581
3582 | 16-55.
16-57.
16-57.
16-58.
16-58. | do | Sept. 21, 1943
Mar. 26, 1943
Sept. 8, 1943
Mar. 26, 1943
Sept. 20, 1943 | 18. 8
18. 8
13. 3
13. 3 | 8
10
6
15
8 | 62
 | | 3583
3584
3585
3586
3587 | 16-62 | NE¼S E¼ sec.2
do
NW¼NE¼ sec. 2
dodo | Sept. 9, 1943
Sept. 21, 1943
Sept. 8, 1943
Nov. 2, 1943
Jan. 5, 1944 | | 8
8
5
4 | 64
65
66
67
66 | | 3588
3589
3590
3591
3592 | 16-65 | do
do
SW¼SE¼ sec. 3
SE¼SW¼ sec. 3 | Mar. 2, 1944
May 3, 1944
June 11, 1944
Sept. 17, 1940
Oct. 14, 1940 | 39
69 | 6
4
2
 | 67
66
67 | between the mouth of Bonita Creek near Solomonsville and the Southern Pacific Railat Calva—Continued [Analyses in parts per million] | Analysis No. | Source . | Location | Date sampled | Depth of well (feet) | Yield (gallons
per minute) | Temperature (°F.) | |--------------------------------------|--|--|--|---|-------------------------------|------------------------------| | 3593
3594
3595
3596
3597 | Mrs. H. E. Neal domestic welldo Bryce Allen domestic well Sam Horlocker domestic well D. Steele stock well | SE¼SW¼ sec. 3
do
NE¼SE¼ sec. 3
SW¼NE¼ sec. 10
NW¼NW¼ sec. 11 | Mar. 12, 1943
July 16, 1941
Mar. 12, 1943
Mar. 10, 1943
Mar. 29, 1940 | 69
69
65
60
66 | | 66 | | 3598
3599
3600
3601
3602 | do | dodo
SE¼SE¾ sec. 11
SE¼NE¼ sec. 12
NE¼SE¼ sec. 12 | Mar. 18, 1941
Mar. 11, 1943
Feb. 25, 1942
Mar. 9, 1943
May 17, 1944 | 66
66
20
30
38 | | | | 3603
3604
3605
3606
3607 | O. O. Hall unused welldo Driven observation well, 15–56 do15–59 | SE¼SW¼ sec. 12
do | Feb. 25, 1942
Mar. 10, 1943
Mar. 24, 1943
Sept. 13, 1943
Mar. 24, 1943 | 23
23
18. 9
18. 9
23. 7 | 15
8
15 | 65 | | 3608
3609
3610
3611
3612 | 15-59
15-60
Sampled by bailing
do | do
do | Sept. 13, 1943
Mar. 24, 1943
Sept. 9, 1943
Mar. 15, 1944 | 23. 7
23. 9
23. 9
23. 9
23. 9 | 8
12
8 | 64
66
60
62 | | 3613
3614
3615
3616
3617 | Sampled by pumpingdo | do
do
do
do | do
do
Mar. 24, 1943
Sept. 9, 1943
Oct. 30, 1943 | 23. 9
23. 9
24. 5
24. 5
24. 5 | 5
12
8
10 | 66
64
66 | | 3618
3619
3620
3621
3622 | 15-61
15-61
15-61
15-61
15-61 | do | Jan. 5, 1944
Mar. 2, 1944
May 3, 1944
July 11, 1944
Aug. 29, 1944 | 24. 5
24. 5
24. 5
24. 5
24. 5 | 10
8
6
7
8 | 66
64
64
64
64 | | 3623
3624
3625
3626
3627 | 15-61
15-62
15-62
15-70
15-70 | do
do
sel/sel/sec. 12do | Oct. 30, 1944
Mar. 24, 1943
Sept. 9, 1943
Sept. 14, 1943
Oct. 30, 1943 | 24. 5
23. 8
23. 8 | 6
.
25
3
8
12 | 65
66
63
71 | | 3628
3629
3630
3631
3632 | 15-70.
15-70.
15-79.
15-70.
15-70. | do | Jan. 5, 1944
Mar. 2, 1944
May 3, 1944
July 11, 1944
Aug. 30, 1944 | | 10
8
8
5 | 70
68
66
64
64 | | 3633
3634
3635
3636
3637 | 15-70
15-71
15-72
15-73
15-74 | do | Oct. 30, 1944
Sept. 13, 1943
Sept. 14, 1943
 | | 7
8
8
8 | 71
73
62
62
63 | | 3638
3639
3640
3641
3642 | 15-75
15-76
15-76
15-77
15-77
15-79 | SE¼NE¼ sec. 12.
NW¼NE¼ sec. 12.
do
SW¼SE¼ sec. 12.
NW¼SE¼ sec. 12. | June 20, 1943
Sept. 9, 1943
Sept. 27, 1943
Sept. 9, 1943 | | 8
2
6
2 | 64
66
64
66 | | 3643
3644
3645
3646
3647 | 15-80
14-59
14-59
14-69
14-70 | NW\/NE\/sec. 12_
NE\/NE\/sec. 13
do
SE\/SE\/sec. 13 | dodo | 20. 5
20. 5 | 1.5
12
8
8 | 68
64
66
64 | | 3648
3649
3650
3651
3652 | 14-71
14-71
14-71
14-71
14-71
14-71 | NE¼SE¼ sec. 13dododododododo | Sept. 14, 1943
Oct. 30, 1943
Jan. 5, 1944
Mar. 2, 1944
May 3, 1944 | | 4
8
4
5
3 | 65
67
66
- 67
66 | | 2 | The first of the second | | 16 | | | | between the mouth of Bonita Creek near Solomonsville and the Southern Pacific Railat Calva—Continued [Analyses in parts per million] | Specific conductance (K×10° at 25° C.) | Calcium (Ca) | Magnesium
(Mg) | Sodium and po-
tassium (Na+K) | Bicarbonate
(HCO ₃) | Sulfate (SO4) | Chloride (Cl) | Fluoride (F) | Nitrate (NO ₃) | Borate (BO ₃) | Parts per million los sesion | Tons per acre-foot | Total hardness
as CaCOs | Percent sodium | Analysis No. | |--|--------------------------|----------------------|----------------------------------|------------------------------------|--------------------------|--|--------------|----------------------------|---------------------------|--------------------------------------|----------------------------------|----------------------------|----------------------|--------------------------------------| | 28. 2
22. 8
26. 1
25. 4 | 31 | 6. 6 | 7.3 | 115
108
105 | 23. | 5
4
4
2
11 | .6 | 1.0 | | 127 | .17 | 105 | 13 | 3593
3594
3595
3596
3597 | | 23. 0
26. 8
2, 430
245
341 | 30 | 8.7 | 6.0 | 106
385 | 30 | 4
6
6, 720
475 | | | | 131 | . 18 | 111 | 11 | 3598
3599
3600
3601
3602 | | 599
845
296
282
325 | | | | 464
456 | | 1, 160
1, 680
585
575
680 | | | | | | | | 3603
3604
3605
3606
3607 | | 306
607
492
393
393 | 166
330
104
105 | 42
89
49
49 | 443
910
709
712 | 424
. 488
142
134 | 273
610
416
417 | 650
1, 510
1, 165
1, 030
1, 040 | .7 | 4.0
1.0
1.0
1.0 | 3. 5 | 1, 787
3, 690
2, 380
2, 390 | 2. 43
5. 02
3. 24
3. 25 | 587
1, 190
 | 62
62
77
77 | 3608
3609
3610
3611
3612 | | 390
403
414
348
331 | 194
206

173 | 51
51

48 | 653
670

510 | 513
523
424
 | 412
422

318 | 895
930
960
650
770 | 2.3 | 1. 0
1. 0

2. 5 | 7.0 | 2, 460
2, 540
2, 010 | 3.35
3.45

2.73 | 694
724

629 | 67
67
 | 3613
3614
3615
3616
3617 | | 322
329
354
357
354 | | | | | | 705
750
790
805
805 | | | | | | | | 3618
3619
3620
3621
3622 | | 325
428
344
164
223 | 102 | 34 | 344 | 480
276 | 238 | 720
865
290
470 | 1.9 | 1.0 | 6.0 | 1, 330 | 1, 81 | 394 | 65 | 3623
3624
3625
3626
3627 | | 247
250
473
643
585 | 324
514 | 91
135 | 583
719 | 347
394 | 393
554 | 570
545
1,240
1,770
1,520 | 1. 1
. 6 | 5. 0
5. 8 | 2.0 | 2, 810
3, 890 | 3.82
5.29 | 1,180
1,840 | 52
46 | 3628
3629
3630
3631
3632 | | 93. 9
106
298
260
259 | 20 | 7.6 | 173 | 208
315 | 87
276 | 138
155
670
555
535 | | 1.0 | | 529 | .72 | 81 | 82 | 3633
3634
3635
3636
3637 | | 378
492
510
794
1,450 | 262 | 80 | 937 | 378
692 | 445 | 895
1,170
1,580
1,650
4,560 | | 22 | | 3,510 | 4, 77 | 983 | 67 | 3638
3639
3640
3641
3642 | | 1, 280
1, 370
1, 220
1, 280
1, 600 | | | | 520 | | 3, 870
4, 090
3, 610
3, 890
5, 030 | | | | | | | | 3643
3644
3645
3646
3647 | | 1,380
1,350
1,360
1,340
1,350 | 771 | 221 | 2, 210 | 414 | 1,500 | 4, 030
4, 060
4, 060
3, 960
3, 980 | 1.8 | 12 | 20 | 8,980 | 12. 2 | 2,830 | 63 | 3648
3649
3650
3651
3652 | | Analysis No. | Source | Location | Date sampled | Depth of well (feet) | Yield (gallons
per minute) | Temperature (°F.) | |--------------|--|---|---|----------------------|-------------------------------|-------------------| | | D: 1 " " G | | | | | | | 3653 | Driven observation well—Con. | NE¼SE¼ sec. 13 | Tuly 11 1044 | | 4 | 67 | | 3654 | 14-71 | do | July 11, 1944
Aug. 30, 1944 | | 5 | 68 | | 3655 | 14-7114-71 | | | | 4 | 67 | | 3656 | 14-14 | NE¼NW¼ sec. 13
SE¼NW¼ sec. 13 | Sept. 14, 1943 | | 8
5 | 65
67 | | 3657 | 14-73 | SE4NW4 sec. 13 | do | | Э | 01 | | 3658 | 14-74 | NE¼NW¼ sec. 13 | do | | 8 | 66 | | 3659 | 14-75 | NE¼NW¼ sec. 13
SW¼NE¼ sec. 13 | Sept. 27, 1943 | | 8
8 | 65 | | 3660
3661 | 14-76
14-76 | NW¼NE¼ sec. 13 | Sept. 27, 1943 | | 8 | 64
65 | | 3662 | 14-76 | do | Oct. 30, 1943
Jan. 5, 1944 | | 8 | 65 | | | | | 1 | | | | | 3663
3664 | 14-76 | do | Mar. 2, 1944
May 3, 1944 | | 10 | 65
64 | | 3665 | 14-76 | do | July 11, 1944 | | 2
6 | 65 | | 3666 | 14-76 | do | Aug. 30, 1944 | | 8 | 65 | | 3667 | 14-76 | do | Oct. 30, 1944 | | 7 | 65 | | 3668 | Sam Henry unused well | SW14SW14 sec. 14 | Feb. 26, 1942 | 150 | | | | 3669 | YL Ranch stock well | do | Mar. 15, 1943 | 150 | | | | 3670 | YL Ranch stock well | SE14 sec. 19 | Jan. 22, 1941 | | | | | 3671 | Brimhall unused well | SE¼ sec. 19.
SE¼ sec. 19.
SE¼ SE½ sec. 25.
T. 7 S., R. 23 E.:
SE¼NE¼ sec. 1. | Sept. 16, 1943 | | | | | 3672 | Bill Napier flowing well, USGS 461_ | SE¼NE¼ sec. 1 | Apr. 4, 1940 | 600 | 50 | 73 | | 3673 | USGS 462
USGS 463 | | Mar. 4, 1940 | 200 | 2 | 70
71 | | 3674
3675 | Ben Brownflowing well, USGS 464_ | do
NEL/SWL/ sec 1 | Apr. 4, 1940
Mar. 4, 1940 | 80
80 | 1
2 | 4 | | 3676 | do | NE¼SW¼ sec. 1
do | Mar. 4,1940
Apr. 4,1940 | 80 | 2 | 71 | | 0.077 | a. | a. | | 80 | | l | | 3677
3678 | USGS 465 | do | Jan. 7, 1941
Apr. 4, 1940 | 310 | 30 | 70 | | 3679 | USGS 465
Ben Brown domestic well, USGS 466_ | do | Jan. 7, 1941 | 310 | | | | 3680
3681 | Ben Brown domestic well, USGS 466. | do | Jan. 4, 1941 | 48 | 10 | | | 9091 | Ben Brownflowing well, USGS467. | | | | | | | 3682 | USGS 468 | SW14NW14 sec. 1 | Jan. 9, 1941 | | 30 | | | 3683
3684 | Old Cowboy Corral spring
Spring in Matthews Wash | NW14SE14 sec. 2 | Jan. 8, 1941 | | 7
3 | | | 3685 | Spring at Bear Springs Flat | NWWNEW sec. 11. | do | | i | | | | The state of s | SW4NW4 Sec. 1 NW4/SE4 Sec. 2 SW4/SW4 Sec. 5 NW4/NE4 Sec. 11 T. 4 S., R. 22 E.: SE4/SE4 Sec. 11 do do do do do do | z | | | 00 | | 3686
3687 | Driven observation well, 22-82 | SE¼SE¼ sec. 11 | July 29, 1943
Apr. 26, 1944 | | 8
4 | 66
64 | | 3688 | do | do | Aug. 2, 1943 | | 8 | 69 | | 3689 | 22-87 | do | Aug. 2, 1943
May 23, 1944 | | 6 | 66 | | 3690 | 22-88 | do | July 29, 1943 | | 8 | 67 | | 3691 | 22-88 | do | Apr. 26, 1944 | | 5 | 63 |
| 3692 | 22-89 | NE¼SE¼ sec. 11
SE¼SE¼ sec. 11 | July 29, 1943
Apr. 4, 1943 | 18. 5 | 8
10 | 64 | | 3693
3694 | 22-92 | do | Aug. 13, 1943 | 18.5 | 5 | 66 | | 3695 | 22-93 | do
NE¼SE¼ sec. 11 | Apr. 4, 1943 | 18. 9 | 12 | | | 3696 | 22-93 | do | A 120 12 1042 | 18.9 | 7 8 | 63 | | 3697 | 22-97 | SE½NE½ sec. 11 | Apr. 5, 1943 | 24.1 | 13 | | | 3698 | 22-98 | SE¼NE¼ sec. 11
NW¼SE¼ sec. 11 | do | 23. 9 | 10 | | | 3699
3700 | S. L. Claridge irrigation well | SE¼SE¼ sec. 12 | Aug. 13, 1943
Apr. 5, 1943
do
Sept. 1, 1943
Apr. 18, 1944 | 23. 9 | 8 | 68 | | - | Ciarago miganon won | · | | | | | | 3701 | do | do | Apr. 21, 1944 | | | | | 3702
3703 | S. L. Claridge stock well | do
SW¼NE¼ sec. 12
do | Apr. 24, 1944
Feb. 27, 1942 | | | | | 3704 | do | do | Apr. 4, 1943
Apr. 27, 1944 | | | | | 3705 | do | do | Apr. 27, 1944 | | | 67 | | 3706 | Ed. McEuen drilled well | SEWSEW see 12 | Feb. 27, 1942 | 30 | | | | 3707 | Driven observation well, 22-10 | do | Apr. 1, 1943 | 18.7 | 10 | | | 3708 | do | do | Sept. 2, 1943
May 26, 1944 | 18. 7
18. 7 | 8 7 | 71
65 | | 3709
3710 | 22-11 | do | July 28, 1943 | 10. (| 5 | 64 | | | | | , | | | • | between the mouth of Bonita Creek near Solomonsville and the Southern Pacific Railat Calva—Continued [Analyses in parts per million] | Analysis No. | Source | Location | Date sampled | Depth of well (feet) | Yield (gallons
per minute) | Temperature (°F.) | |--------------------------------------|--|--|---|---|-------------------------------|----------------------------| | 3711
3712
3713
3714
3715 | Driven observation well—Con. 22-11 22-11 22-11 22-11 22-11 22-11 | SE¼SE¼ sec, 12
dododododododo | Jan. 6, 1944
Apr. 24, 1944
July 14, 1944
Sept. 1, 1944
Oct. 31, 1944 | | 5
8
3
5
4 | 67
58
67
73
73 | | 3716
3717
3718
3719
3720 | 22-15 | do
dodo | Aug. 3, 1943
May 26, 1944
Apr. 4, 1943
Sept. 1, 1943
Apr. 25, 1944 | 18. 9
18. 9
18. 9 | 4
5
15
8
8 | 69
76
60 | | 3721
3722
3723
3724
3725 | 22-21 | SW¼SE¼ sec. 12
do
SE¼SE¼ sec. 12
dodo | July 30, 1943
Apr. 25, 1944
July 30, 1943
Nov. 2, 1943
Jan. 6, 1944 | | 8
3
8
5
5 | 79
62
71
75
62 | | 3726
3727
3728
3729
3730 | 22-22
22-22
22-22
22-22
22-22 | do | Mar. 3, 1944
Apr. 25, 1944
July 14, 1944
Sept. 1, 1944
Oct. 31, 1944 | | 8
4
4
6
6 | 54
54
64
73
75 | | 3731
3732
3733
3734
3735 | 22-23 | NE48E4 sec. 12
SW48E4 sec. 12
dodo | Apr. 2, 1943
Sept. 2, 1943
Apr. 25, 1944
Apr. 4, 1943
Aug. 3, 1943 | 24

23. 5
23. 5 | 10
8
3
10
8 | 74
58
70 | | 3736
3737
3738
3739
3740 | 22-31 | NEWSEW sec. 12 | Apr. 4,1943
Sept. 1,1943
Apr. 25,1944
Apr. 2,1943
Apr. 4,1943 | 29. 4
29. 4
29. 4
23. 5
23. 4 | 5
6
6
15 | 67
65 | | 3741
3742
3743
3744
3745 | 22-38 | NW48E4 sec. 12 | Apr. 3, 1943
do
Sept. 1, 1943
Nov. 2, 1943
Jan. 6, 1944 | 18. 5
18. 5
18. 5
18. 5
18. 5 | 7
8
8
15 | 68
68
65 | | 3746
3747
3748
3749
3750 | 22-43 | do
dodododo | Feb. 10, 1944
Mar., 3, 1944
Apr. 25, 1944
Sept. 1, 1944
July 29, 1943 | 18. 5
18. 5
18. 5
18. 5 | 10
8
8
8 | 64
64
69
67 | | 3751
3752
3753
3754
3755 | 22-45 | NW¼SE¼ sec. 12
SE¼SW¼ sec. 12
do
do | Apr. 3, 1943
Apr. 2, 1943
Sept. 1, 1943
Apr. 26, 1944
Apr. 3, 1943 | 18.6
18.6
18.6
18.6
18.5 | 5
1
8
10
15 | 68
61 | | 3756
3757
3758
3759
3760 | 22-52 | do
do
NE¼SW¼ sec. 12
SE¼SW¼ sec. 12
do | Sept. 1, 1943
Apr. 26, 1944
July 28, 1943
Apr. 4, 1943
Sept. 1, 1943 | 18. 5
18. 5
23. 8
23. 8 | 8
6
5
5
6 | 67
64
67
 | | 3761
3762
3763
3764
3765 | 22-60 | do
NE¼8W¼ sec. 12
do
do
SE¼NW¼ sec. 12 | Apr. 26, 1944
Apr. 4, 1943
Aug. 13, 1943
July 28, 1943
Apr. 4, 1943 | 23. 8
18. 7
18. 7
23. 9 | 2
15
8
5
6 | 66
67
67 | | 3766
3767
3768
3769
3770 | 22-67 | SW¼SW¼ sec. 12dododododododo | July 30, 1943
Apr. 26, 1944
Apr.: 3, 1943
Sept. 1, 1943
Apr. 26, 1944 | 18.7
18.7
18.7 | 8
6
15
8 | 64
64
 | between the mouth of Bonita Creek near Solomonsville and the Southern Pacific Railat Calva—Continued [Analyses in parts per million] | | | | | [AI | lalyse | s in pa | rts pe | L HIIII | ion j | | | | | | |--|------------------|-------------------|----------------------------------|---------------------------------|-------------------|---------------------------------------|--------------|------------------|--------------|----------------------------|-------------------------|--|------------------|--| | nduct-
×10 at | Ca) | В | nd po-
la+K) | nate
Ds) | 5.0 | CI) | F) | (03) | 03) | Disso
soli | lved
ds | lness
O ₃ | dium | 20. | | Specific conductance (K×10° at 25° C.) | Calcium (Ca) | Magnesium
(Mg) | Sodium and po-
tassium (Na+K) | Bicarbonate
(HCO3) | Sulfate (SO4) | Chloride (Cl) | Fluoride (F) | Nitrate (NOs) | Borate (BO2) | Parts per
million | Tons per
acre-foot | Total hardness
as CaCO ₃ | Percent sodium | Analysis No. | | 325
419
489
282
298 | 152
232
93 | 42
61
27 | 510
610
487 | 328
302
304 | 330
448
288 | 740
1,020
1,060
600
655 | 1. 4
1. 0 | 1. 0
. 5 | 6. 0
3. 5 | 1, 940
2, 520
1, 650 | 2. 64
3. 43
2. 24 | 552
830
343 | 67
61
76 | 3711
3712
3713
3714
3715 | | 148
130
308
155
424 | 60
183 | 16
50 | 209
401 | 287
326 | 135
295 | 270
208
680
280
1,030 | | .5 | | 770
1, 770 | 1. 05
2. 41 | 216
662 | 68
57 | 3716
3717
3718
3719
3720 | | 443
545
445
198 | 237 | 71
20 | 887
348 | 278
308

229
350 | 598
202 | 1,080
1,370
410 | 1.4 | 2.0
.5
1.0 | 1.5 | 3, 320
1, 150
2, 230 | 4. 52
1. 56 | 884
224
706 | 69
- 77
63 | 3721
3722
3723
3724 | | 372
312
524
542
436
168 | 331
174 | 79
45 | 753
736
325 | 353
350 | 374
583
470 | 705
1,340
1,350
1,020 | 1.4 | 0 | 5. 0 | 3, 260
2, 620 | 3. 03
4. 43
3. 56 | 1, 150
619 | 59
72 | 3725
3726
3727
3728
3729 | | 167
297
445
287
128 | 36 | 10 | 325 | 277
251

319 | 172 | 300.
310
1,100
610 | 3.1 | 1.0 | | 984 | 1.34 | 131 | 84 | 3730
3731
3732
3733
3734
3735 | | 316
916
384
335 | 114
437 | 28
107 | 518
1,653 | 281
412
 | 287
1,800 | 705
2,060
855
765 | 2.0 | 1.0
3.0 | 1. 5
5. 0 | 1, 791
6, 260 | 2. 44
8. 51 | 400
1,530 | 74
70 | 3736
3737
3738
3739 | | 270
218
301
405
417
360 | 260 | 69 | 573 | 261
284
301
308
312 | 435 | 585
440
665
985
1,040 | | | | 2, 530 |

3, 44 | 932 | 57 | 3740
3741
3742
3743
3744 | | 360
360
357
364
416 | | | | 298 | | 865
842
865
880
1,020 | | | 3. 2 | | | | | 3745
3746
3747
3847
3749 | | 296
304
270
237
306
321 | 164 | 40 | 421 | 297
307 | 289 | 670
665
580
500
710 | 1.9 | 1.0 | 1.0 | 1,728 | 2.35 | 574 | 61 | 3750
3751
3752
3753
3754 | | 322
391
221 | 114 | 29 | 315 | 301
324
271
318 | 207 | 730
725
950
460 | | 1.0 | | 1, 260 | 1. 71 | 404 | 63 | 3756
3757
3758 | | 248
263
263
456
429 | 249 | 75 | 641 | 318
218
424
420 | 380 | 530
595
610
1, 120
1, 035 | | 1.0 | | 2, 670 | 3. 63 | 930 | 60 | 3759
3760
3761
3762
3763 | | 230
248
114 | 170 | 43 | 279 | 283 | 226 | 530
190
510 | .7 | .5 | | 1, 380 | 1.88 | 602 | 50 | 3763
3764
3765
3766
3767
3768 | | 236
307
320
326 | | | | 349 | | 730
770 | | | | | | | | 3768
3769
3770 | | Date sampled | | | | | | | |
--|--------------|-------------------------------|--------------------|------------------------------|----------------------|-------------------------------|----------| | 3771 22-69 | Analysis No. | Source | Location | Date sampled | Depth of well (feet) | Yield (gallons
per minute) | H | | 3771 22-69 | | Driven observation well—Con | | | | | | | 3776 22-75. | 3771 | 22-69 | NW1/4SW1/4 sec. 12 | Apr. 4, 1943 | 18.8 | 4 | | | 3776 22-75. | 3772 | 22-70 | do | Apr. 5,1943 | 23.9 | 10 | | | 3776 22-75. | 3774 | 22-74 | do | July 30, 1943 | 18.7 | 8.0 | 66 | | 3776 22-75. | | 22-74 | đo | Apr. 26, 1944 | 18.7 | 4 | 64 | | 3777 22-75 | 3776 | 22–75 | | Apr 3 1943 | 18.7 | 6 | | | Section Sect | 3777 | 22-75 | 1 00 | Sept. 1, 1943 | 18.7 | 6 | | | Section Sect | 3778 | 22-75 | NWI/SWI/ 202 12 | Apr. 26, 1944 | 18. 7 | 6 | 64 | | Bert Hinton irrigation well | 3780 | 22-84 | do | Apr. 5, 1943 | 18.8 | | | | R. Knowles flowing well SE\(SEC 13 | | Don't Winter indication small | ł. | Mar. 10 1040 | 70 | | ا 🚓 ا | | R. Knowles flowing well SE\(SEC 13 | 3782 | Bert Hinton domestic well | dodv % sec. 13 | Mar. 29, 1940 | 27 | | | | 3786 | 3783 | do | do | July 14, 1944 | 27 | | | | 3786 | 3784
3785 | R. Knowles flowing well | SE¼SE¼ sec. 13 | Apr. 24, 1941
Jan. 5 1944 | | 21 | 83 | | H. A. McBeath stock well | | | ļ | | 1 | | 1 | | 3789 | 3786 | L. A. McPoeth stock well | do | Jan. 6, 1944 | 810 | | 82 | | Driven observation well, 12-3 SEMNEM, sec. 13 Apr. 1, 1943 23.3 68 | 3788 | lao | do | | 53 | | | | 3791 | 3789 | Driven observation well, 22-3 | SE¼NE¼ sec. 13 | Apr. 1,1943 | 23.3 | .1 | | | 3792 | 3790 | ao | ao | Aug. 4,1943 | 23.3 | | 68 | | 3793 | 3791 | do | do | Nov. 3, 1943 | 23.3 | | | | 3794 | 3792 | do | do | Jan. 6,1944
Mor 3 1044 | 23.3 | | | | 3796 | | do | do | Apr. 27, 1944 | 23.3 | | | | 3797 | 3795 | do | do | July 14, 1944 | 23.3 | 1.5 | 62 | | 3798 22-5 | 3796 | | do | Aug. 30, 1944 | 23.3 | 1 | 63 | | 3800 22-6 | 3797 | | do | Oct. 31, 1944 | 23.3 | | 63 | | 3800 22-6 | 3799 | 22-5 | do | July 29, 1943 | 22. 2 | 4 | 66 | | S806 22-8 | 3800 | 22-6 | do | Apr. 2, 1943 | 23. 5 | 7 | | | S806 22-8 | 3801 | 22-6 | do | Sept. 1,1943 | 23. 5 | | | | S806 22-8 | 3802 | 22-6 | do | July 14, 1944 | 23. 5 | 1 | 70 | | S806 22-8 | 3804 | 22-7 | do | Sept. 1.1943 | 23.4 | 8 | 68 | | 3808 22-8 | 3805 | 22-7 | do | May 25, 1944 | | 6 | 67 | | 3808 22-8 | 3806 | 22-8 | NE¼NE¼ sec. 13 | Apr. 1,1943 | 23. 9 | 10 | | | 3809 22-9 | 3807 | 22-8 | do | Sept. 1, 1943 | | 8 | | | SEI/NEI/4 sec. 13 | | 22-8 | do | May 25, 1944
Ang. 3, 1943 | 23. 9 | 8 | 72 | | S812 22-12 | 3810 | 22-9 | do | Apr. 27, 1944 | | 3 | 64 | | S812 22-12 | 3811 | 22-12 | SE¼NE¼ sec. 13 | Aug. 3, 1943 | | 8 | 67 | | 3814 22-13 | 3812 | 22-12 | do | May 24, 1944 | | 5 | 65 | | 3816 22-13 | 3813
3814 | 22-13 | NE4NE4 sec. 13 | Apr. 1, 1943 | 18.6 | 8.2 | 71 | | SWI4NE Sec. 13 | 3815 | | do | May 25, 1944 | 18.6 | 7 | 64 | | Sept. 1,1943 18.6 10 | 3816 | 22-14 | do | do | | 6 | 65 | | 3819 22.18 | 3817 | | SW1/2NE1/2 sec. 13 | Apr. 2, 1943 | | 10 | | | NW¼NE¼ sec. 13. Apr. 1, 1943 18.3 1 | 3818
3819 | 22-18 | do | May 24, 1943 | 18.6 | 9 | | | 3821 22-19 do Sept. 1,1943 18.3 3 68 3822 22-19 do may 25,1944 18.3 3 66 3823 22-20 do do may 25,1944 18.3 3 66 3824 22-24 do do may 21,1943 23.7 5may 22.7 3825 22-24 do may 24,1944 23.7 2 66 3826 22-25 do may 24,1944 23.7 2 66 3827 22-25 do may 25,1944 may 26,1944 may 26,1944 may 26,1944 3828 22-25 do may 27,1943 may 28,1943 may 28,1943 may 28,1943 may 28,1943 3828 22-25 do may 28,28 29-25 may 28,28 may 29,29 may 28,28 | 3820 | 22-19 | NW¼NE¼ sec. 13 | Apr. 1, 1943 | 18.3 | ĭ | | | 3822 22-19 do Mây 25, 1944 18.3 3 66 3823 22-20 do do 20.0 do 7 66 3824 22-24 SE½NE¼ sec. 13 Apr. 1, 1943 23.7 5 3825 22-24 do Sept. 1, 1943 23.7 4 65 3826 22-24 do May 24, 1944 23.7 2 66 3827 22-25 do Aug. 3, 1943 8 64 3828 22-25 do May 25, 1944 8 66 | 3821 | 22-19 | | Sept. 1.1943 | 18.3 | 3 | 68 | | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | 3822 | 22-19 | . do | May 25, 1944 | 18.3 | 3 | 66 | | 3825 22-24 | 3823 | 22-20 | SEL/NEL/ sac 12 | do | 23 7 | 7
5 | 66 | | 3826 22-24 | 3825 | 22-24 | do | Sept. 1, 1943 | 23. 7 | 4 | 65 | | 3827 22-25 do May 25, 1944 8 64 3828 22-25 do May 25, 1944 6 63 | 3826 | 22-24 | | May 24 1944 | 23.7 | 2 | 66 | | 3828 22-25 do May 25.1944 6 63 | 3827 | 29-25 | do | Aug. 3.1943 | | 8 I | 64 | | 3830 22-26 May 25, 1944 10 65 | | 22-25 | NW1/NE1/ 200 12 | May 25, 1944 | | 6
8 | 63
66 | | | 3830 | 22-26 | do | May 25, 1944 | | | | between the mouth of Bonita Creek near Solomonsville and the Southern Pacific Railat Calva—Continued [Analyses in parts per million] | | | | | [25. | 1413 50 | s in pa | LCS PC | | 1011 | | | | | | |---|------------------|-------------------|------------------------|--------------------|-------------------|--------------------------|------------------|----------------------|---------------------------|-------------------------|-------------------------|-------------------------------|----------------|--------------------------------------| | onduc-
X10 ⁵ at | Ca) | g | and po-
(Na+K) | nate
33) | ,
(†0 | (c1) | F) | (03) | 03) | Disso
sol | olved
ids | hardness
CaCO ₃ | dium | 70. | | Specific conduc-
ance (K×10 ⁵ at
25° C.) | Calcium (Ca) | Magnesium
(Mg) | Sodium a
tassium (l | Bicarbonate (HCO3) | Sulfate (SO4) | Chloride (Cl) | Fluoride (F) | Nitrate (NO3) | Borate (BO ₃) | Parts per
million | Tons per
acre-foot | Total has as CaC | Percent sodium | Analysis No. | | 304 | | | | 342 | | 685 | | | | | | | | 2771 | | 236
255
172
253 | 125 | 35 | 379 | 271
393 | 180 | 500
545
315
555 | | 1.0 | | 1, 459 | 1.98 | 456 | 64 | 3771
3772
3773
3774
3775 | | 316
258 | | | | 352 | | 725
565 | | | | | | ļ | | 3776
3777 | | 258
297
516
230 | 156 | 39 | 443 | 327
270 | 270 | 680
1, 365
490 | 1, 5 | 0 | .1 | 1, 750 | 2, 38 | 550 | 64 | 3778
3779
3780 | | 80
67
148 | 76 | 23 | 204 | 212
188
151 | 130
60
196 | 112
81
282 | 1,1 | . 6
0 | 3.0 | 856 | 1.16 | 248
120
284 | 61 | 3781
3782
3783 | | 2, 217
2, 220 | 127 |
 | 5, 170 | 479 | 1, 921 | 6, 750 | | | | 14, 290 | 19. 4 | 683 | 94 | 3784
3785 | | 2, 230
65. 4 | 138 | 88 | 5, 190 | 476 | 1, 910 | 6, 800
93 | 4. 2 | 7.4 | 16 | 14, 400 | 19. 6 | 706 | 94 | 3786
3787 | | 59.8
115
122 | 34 | 8.1 | 83 | 161
202 | 60 | 71
196
202 | 1. 2 | 2.5 | .4 | 339 | .46 | 118 | 60 | 3788
3789
3790 | | 128
404
499 | 80
204
414 | 19
44
85 | 169
694
640 | 217
362
385 | 142
789
737 | 222
755
1, 190 | .9
4.4
2.1 | 3. 0
5. 0
8. 5 | 8. 0
8. 0 | 743
2, 670
3, 270 | 1. 01
3. 63
4. 45 | 278
690
1, 380 | 57
69
50 | 3791
3792
3793 | | 454
345 | 270 | 61 | 393 | 300 | 393 | 1,070
790 | 1.4 | 8. 5 | 2.0 | 2, 060 | 2. 80 | 925 | 48 | 3794
3795 | | 353
190
129 | 114
42 | 27
9.8 | 254
232 | 257
348 | 223
123 | 830
355
168 | | 5. 0
. 5 | 1.0 | 1, 100
747 | 1.50
1.02 | 396
146 | 58
78 | 3796
3797
3798 | | 129
366
137 | | | | 233 | | 910
216 | | | | | | | | 3799
3800 | | 109
95. 7
152 | | | | 234 | | 146
124
255 | | | | | | | | 3801
3802
3803 | | 145
142 | | | | | | 255
226
230 | | | | | | | | 3803
3804
3805 | | 106
103
130 | | | | 252 | | 154
146
206 | | | | | | | | 3806
3807
3808
3809 | | 99. 4
108 | 55 | 16 | 145 | 257 | 100 | 144
162 | | . 5
 | | 587 | . 80 | 204 | 61 | 3809
3810 | | 137
187
126 | | | | 293 | | 220
330
190 | | | | | | | | 3811
3812
3813 | | 111
109 | | | | | | 156
148 | | | | | | | | 3814
3815 | |
115
164
140 | | | | 319 | | 168
265
208 | | | | | | | | 3816
3817
3818 | | 142
142 | 74
45 | 19
12 | 218
243 | 322
301 | 164
120 | 212
222 | 1. 5
2. 3 | 0.5 | . 2 | 847
793 | 1. 15
1. 08 | 262
162 | 64
77 | 3819
3820 | | 121
115
118
137 | 59 | 17 | 182 | 301
290 | 127 | 176
164
164
210 | .7 | 0 | .5 | 698 | . 95 | 217 | 65 | 3821
3822
3823
3824 | | 143 | | | | | | 230 | | | | | | | | 2825 | | 170
168
138
140 | 50 | 12 | 249 | 339 | 139 | 285
285
204
220 | 2.3 | 0 | , 5 | 823 | 1.12 | 174 | 76 | 3826
3827
3828
3829 | | 120 | | | | | | 170 | | | | | | | | 3830 | Chemical character of ground waters in the Gila River Basin, Graham County, Ariz., road bridge | - | | | ı | | | | |--------------------------------------|--|--|---|---|-------------------------------|----------------------------| | Analysis No. | Source | Location | Date sampled | Depth of well (feet) | Yield (gallons
per minute) | Temperature (°F.) | | 3831
3832
3833
3834
3835 | Driven observation well—Con. 22-27. 22-27. 22-27. 22-27. 22-32. 22-32. | NW¼NE¼ sec. 13do
do
do
SE¼SW¼ sec. 13do | Apr. 14,1943
Sept. 2,1943
May 25,1944
Aug. 2,1943
May 24,1944 | 13. 3
13. 3
13. 3 | 8
8
3
1 | 70
66
64
65 | | 3836
3837
3838
3839
3840 | 22-33
22-33
22-33
22-34
22-34 | NE¼NW¼ sec. 13do | Apr. 1, 1943
Sept. 1, 1943
May 24, 1944
Aug. 3, 1943
May 25, 1944 | 18. 5
18. 5
18. 5 | 5
6
8
4 | 63
64
67
63 | | 3841
3842
3843
3844
3845 | 22-35 | NW¼NE¼ sec. 13
do
SE¼NW¼ sec. 13
dodo | July 30, 1943
Apr. 25, 1944
Apr. 3, 1943
Sept. 1, 1943
May 25, 1944 | 24, 1
24, 1
24, 1
24, 1 | 3
1
10
8
7 | 69
62
64
65 | | 3846
3847
3848
3849
3850 | 22-40 | do
do
NE¼NW¼ sec. 13
do | Apr. 3,1943
Sept. 1,1943
May 24,1944
Aug. 3,1943
May 24,1944 | 23. 4
23. 4
23. 4 | 15
8
8
8 | 62
63
66
66 | | 3851
3852
3853
3854
3855 | 22-42
22-42
22-42
22-46
22-46 | do
do
SW1/NE1/sec. 13
do | Apr. 3, 1943
Sept. 2, 1943
Apr. 26, 1944
Aug. 2, 1943
May 24, 1944 | 18. 7
18. 7
18. 7 | 5
. 5
. 25
8
5 | 75
65
66
65 | | 3856
3857
3858
3859
3860 | 22-47
22-47
22-47
22-47
22-47 | SW¼NW¼ sec. 13do | July 31, 1943
Nov. 3, 1943
Jan. 6, 1944
Mar. 3, 1944
May 3, 1944 | | 8
5
4
5
2 | 67
66
65
66
66 | | 3861
3862
3863
3864
3865 | 22-47.
22-47.
22-47.
22-48. | do | July 14, 1944
Sept. 1, 1944
Oct. 31, 1944
July 31, 1943
Nov. 3, 1943 | | 2
2
2
8
4 | 68
67
67
67
65 | | 3866
3867
3868
3869
3870 | 22-48.
22-48.
22-48.
22-48.
22-48. | do
dodo | Jan. 6, 1944
Mar. 3, 1944
May 3, 1944
July 14, 1944 | | 5
5
4
4 | 65
64
64
65
65 | | 3871
3872
3873
3874
3875 | 22-48.
22-48.
22-49.
22-49.
22-49. | do
NE¼NW¼ sec. 13
dodo | Sept. 1, 1944
Oct. 31, 1944
Sept. 1, 1943
Nov. 3, 1943
Jan. 6, 1944
Mar. 3, 1944 | | 4
8
12
8 | 65
68
68
66
64 | | 3876
3877
3878
3879
3880 | 22-49
22-49
22-49
22-49
22-49
22-50 | do
do
do | May 3, 1944 July 14, 1944 Sept. 1, 1944 Oct. 31, 1944 Apr. 2, 1943 | 18.5 | 8
3
8
10
5 | 63
64
65
69 | | 3881
3882
3883
3884
3885 | 22-50
22-50
22-56
22-56
22-66 | do
SW¼NW¼ sec, 13
dodo | Sept. 2, 1943
Apr. 26, 1944
Apr. 3, 1943
Sept. 1, 1943
May 24, 1944 | 18. 5
18. 5
24. 2
24. 2
24. 2 | 5
2
12
8 | 66
65
65
66 | | 3886
3887
3888
3889
3890 | 24-57 | NW¼NW¼ sec. 13-
do
dodododo | Apr. 3, 1943
Sept. 1, 1943
May 24, 1944
Aug. 5, 1943
Apr. 26, 1944 | 23, 9
23, 9
23, 9 | 5
8
6
8 | 63
64
68
65 | between the mouth of Bonita Creek near Solomonsville and the Southern Pacific Railat Calva—Continued [Analyses in parts per million] | cx10° at | (Ca) | an and an | and po-
(Na+K) | onste
Os) | 304) | (CI) | (F) | NO ₈) | (803) | Disso
soli | | hardness
CaCO ₃ | odium | Z
No. | |--|----------------|---|---|--------------------|---------------|------------------------------------|----------|-------------------|---------------------------|----------------------|-----------------------|-------------------------------|----------------|--------------------------------------| | Specific conduct-
ance (KX10 ⁵ at
25° C.) | Calcium (Ca) | Magnesium
(Mg) | Sodium tassium (| Bicarbonate (HCOs) | Sulfate (SO4) | Chloride (Cl) | Fluoride | Nitrate (NO3) | Borate (BO ₃) | Parts per
million | Tons per
acre-foot | Total h | Percent sodium | Analysis No. | | 153
297
135
315
194 | | | | 307 | | 255
680
220
685
350 | | | | | | | | 3831
3832
2833
3834
3835 | | 150
155
132
186
163 | 44 | 12 | 238 | 327
310 | 123 | 246
255
204
360
295 | 2.3 | . 5 | 2.0 | 776 | 1.06 | 160 | 76 | 3836
2837
3838
3839
3840 | | 456
333
207
190
158 | 158
132 | 38
27 | 522
278 | 296
292
326 | 349
198 | 1, 125
765
405
350
265 | 1.4 | . 5
1. 0 | | 1, 980
1, 202 | 2. 69
1. 63 | 550
440 | 67
58 | 3841
3942
3843
3844
3845 | | 200
157
154
396
314 | 179 | 48 | 444 | 329

293 | 322 | 375
270
260
955
730 | 1.5 | .5 | .5 | 1,870 | 2. 54 | 644 | 60 | 3846
3847
2848
3849
3850 | | 312
405
326
165
154 | | | | 306 | | 700
985
750
275
250 | | | | | | | | 3851
3852
3853
3854
3855 | | 153
151
153
142
150 | 116 | 29 | 166 | 281 | 155 | 265
266
248
230 | 1.1 | .5 | 6.0 | 871 | 1.18 | 408 | 47
 | 3856
3857
3858
3859
3860 | | 143
142
142
237
189 | 86 | 25 | 296 | 310 | 172 | 236
234
235
495
370 | 2.3 | .5 | •13 | 1,100 | 1.50 | 318 | 67 | 3861
3862
3863
3864
3865 | | 180
190
190
196
203 | | | | | | 342
375
355
375
395 | | | | | | | | 3866
3867
3868
3869
3870 | | 160
412
384
352
288 | 224 | 56 | 552 | 292
320 | 391 | 275
995
950
840
660 | .8 | .5 | 13 | 2,320
1,730 | 3. 16 | 790
560 | 60 | 3871
3872
3873
3874
3875 | | 282
266
278
343
276 | 188 | 46 | 498 | 303
295 | 356 | 620
575
600
795
585 | | 1.0 | | 2, 030 | 2. 76 | 658 | 62 | 3876
3877
3878
3879
3880 | | 384
347
359
326
237 | 203 | 48 | 498 | 293
302
281 | 358 | 930
825
880
745
490 | 1.0 | .5 | .2 | 2,080 | 2.83 | 704 | 61 | 3881
3882
3883
3884
3885 | | 306
284
219
357
282 | 150
379751- | | 417
———————————————————————————————————— | 313

260 | 292 | 705
635
440
855
635 | 1.5 |
 | .5 | 1,660 | 2. 26 | 510 | 64 | 3886
3887
3888
3889
3890 | | Driven observation well—Con.
NW4NW14 sec. 13 Apr. 26, 1944 July 31, 1943 Apr. 26, 1944 July 31, 1943 Apr. 26, 1944 July 31, 1943 Apr. 26, 1944 July 31, 1943 Apr. 26, 1944 Apr. 26, 1944 Apr. 26, 1945 Apr. 26, 1944 Apr. 27, 1943 Apr. 28, 1943 Apr. 28, 1943 Apr. 28, 1943 Apr. 28, 1943 Apr. 28, 1944 Apr. 29, 1943 Apr. 29, 1943 Apr. 29, 1943 Apr. 29, 1943 Apr. 29, 1943 Apr. 29, 1943 Apr. 29, 1944 1945 19 | 2 8 5 3 2 2 10 8 8 6 6 5 8 3 5 5 8 | Temperature (°F.) | |--|--|--| | 3891 22-50 NW¼NW¼ sec. 13 Apr. 26, 1944 3894 22-64 do May 24, 1944 3894 22-65 do Aug. 2, 1943 3895 22-66 do May 24, 1944 3897 22-66 do Apr. 26, 1944 19. 1 3898 22-66 do Apr. 26, 1944 19. 1 3898 22-66 do Apr. 26, 1944 19. 1 3899 22-73 do Apr. 26, 1944 19. 1 3900 22-71 NE¼NE¼ sec. 14 Apr. 26, 1944 3904 22-71 do May 24, 1944 3906 22-71 do May 3, 1944 3906 22-71 do May 3, 1944 3906 22-71 do May 3, 1944 3906 22-71 do May 3, 1944 3906 22-71 do May 3, 1944 3908 22-72 do Apr. 26, 1948 3908 22-73 do May 3, 1944 3908 22-72 do Apr. 26, 1948 3908 32-71 do Apr. 26, 1948 3908 32-71 do Apr. 27, 1943 3908 32-71 do Apr. 27, 1943 3908 32-71 do Apr. 27, 1944 3908 32-71 do Apr. 27, 1943 3908 32-71 do Apr. 27, 1943 3908 32-72 do Apr. 27, 1943 3908 32-72 do Apr. 27, 1943 3908 32-72 do Apr. 27, 1943 3908 32-72 do Apr. 27, 1943 3918 3913 32-79 do Apr. 27, 1943 18, 18, 1943 3918 3918 22-86 do Apr. 27, 1943 38, 18, 1944 3918 | 8 5 3 2 10 8 8 6 5 5 8 3 5 5 8 | 66
65
67
61
67
65
68
60
66 | | 3891 22-50 NW¼NW¼ sec. 13 Apr. 26, 1944 3894 22-64 do May 24, 1944 3894 22-65 do Aug. 2, 1943 3895 22-66 do May 24, 1944 3897 22-66 do Apr. 26, 1944 19. 1 3898 22-66 do Apr. 26, 1944 19. 1 3898 22-66 do Apr. 26, 1944 19. 1 3899 22-73 do Apr. 26, 1944 19. 1 3900 22-71 NE¼NE¼ sec. 14 Apr. 26, 1944 3904 22-71 do May 24, 1944 3906 22-71 do May 3, 1944 3906 22-71 do May 3, 1944 3906 22-71 do May 3, 1944 3906 22-71 do May 3, 1944 3906 22-71 do May 3, 1944 3908 22-72 do Apr. 26, 1948 3908 22-73 do May 3, 1944 3908 22-72 do Apr. 26, 1948 3908 32-71 do Apr. 26, 1948 3908 32-71 do Apr. 27, 1943 3908 32-71 do Apr. 27, 1943 3908 32-71 do Apr. 27, 1944 3908 32-71 do Apr. 27, 1943 3908 32-71 do Apr. 27, 1943 3908 32-72 do Apr. 27, 1943 3908 32-72 do Apr. 27, 1943 3908 32-72 do Apr. 27, 1943 3908 32-72 do Apr. 27, 1943 3918 3913 32-79 do Apr. 27, 1943 18, 18, 1943 3918 3918 22-86 do Apr. 27, 1943 38, 18, 1944 3918 | 8 5 3 2 10 8 8 6 5 5 8 3 5 5 8 | 66
65
67
61
67
65
68
60
66 | | 3893 22-64 | 5
3
2
10
8
8
6
5
8
3
5
8 | 65
67
61
67
65
68
60
66 | | 3895 22-65 | 3
2
10
8
8
6
5
8
8
8
6
5
8 | 67
61
67
65
68
60
66 | | 3895 22-65 do May 24, 1944 3896 22-66 do Sept. 1, 1943 19.1 3897 22-66 do Apr. 2, 1943 19.1 3898 22-66 do Apr. 26, 1944 19.1 3899 22-73 do Aug. 2, 1943 3900 22-73 do May 24, 1944 3901 22-71 NE¼NE¼ sec. 14 July 31, 1943 3902 22-71 do Jan. 6, 1944 3903 22-71 do Jan. 6, 1944 3906 22-71 do May 3, 1944 3906 22-71 do May 3, 1944 3906 22-71 do May 3, 1944 3907 22-71 do Sept. 1, 1944 3907 32-71 do Sept. 1, 1944 3908 22-72 do Aug. 2, 1943 3908 22-72 do Aug. 2, 1943 3910 22-72 do Aug. 2, 1943 3910 22-79 do Aug. 2, 1943 3911 22-79 do Sept. 1, 1944 3912 22-79 do May 23, 1944 3915 22-86 do Aug. 2, 1943 3916 22-86 do Aug. 2, 1943 3916 22-86 do Aug. 2, 1943 3918 3918 Paul Higgins irrigation well SW¼NE¼ sec. 24 July 8, 1940 80 | 10
8
8
6
5
8
8
8
6
5
8 | 61
67
65
68
60
66 | | 3896 22-66 | 8
8
6
5
8
3
5
8 | 65
68
60
66 | | 3898 22-66 | 8
8
6
5
8
3
5
8 | 65
68
60
66 | | 3898 22-66 | 8 6 5 8 3 5 8 | 65
68
60
66 | | 3899 22-73 | 6
5
8
3
5
8 | 68
60
66 | | 3900 22-73 | 5
8
3
5
- 8 | 66 | | 3903 22-71 | 3
5
8 | | | 3903 22-71 | 3
5
8 | | | 3903 22-71 | . 8 | 65 | | 3904 22-71 | | 65 | | 3906 22-71 | | 65 | | 3907 22-71 do Sept. 1, 1944 3908 22-72 do Oct. 31, 1944 3909 22-72 do Aug. 2, 1943 3910 22-72 do May 24, 1944 3911 22-79 do Sept. 1, 1943 18. 2913 3912 22-79 do Sept. 1, 1943 18. 2914 3913 22-79 do May 23, 1944 3915 22-80 do May 23, 1944 3916 3916 22-86 do July 31, 1943 3918 3918 22-86 do July 31, 1943 3918 3918 Paul Higgins irrigation well SW4NE¼ sec. 24 July 18, 1940 80 3020 do May 3, 1943 4, 1943 80 3020 do May 4, 1943 80 3020 do May 4, 1943 80 3020 do May 4, 1943 80 3020 do May 6, 1948 80 3020 do May 6, 1948 80 3020 do May 6, 1948 80 3020 do May 6, 1948 80 3020 do May 6, 1948 80 40 7, 1943 80 40 May 7, 1943 80 40 May 7, 1943 80 40 May 7, 1943 80 40 May 7, 1943 80 40 May 7, 1943 80 40 May 7, 1944 | 5 | 65 | | 3907 22-71 do Sept. 1, 1944 3908 22-72 do Oct. 31, 1944 3909 22-72 do Aug. 2, 1943 3910 22-72 do May 24, 1944 3911 22-79 do Sept. 1, 1943 18. 2913 3912 22-79 do Sept. 1, 1943 18. 2914 3913 22-79 do May 23, 1944 3915 22-80 do May 23, 1944 3916 3916 22-86 do July 31, 1943 3918 3918 22-86 do July 31, 1943 3918 3918 Paul Higgins irrigation well SW4NE¼ sec. 24 July 18, 1940 80 3020 do May 3, 1943 4, 1943 80 3020 do May 4, 1943 80 3020 do May 4, 1943 80 3020 do May 4, 1943 80 3020 do May 6, 1948 80 3020 do May 6, 1948 80 3020 do May 6, 1948 80 3020 do May 6, 1948 80 3020 do May 6, 1948 80 40 7, 1943 80 40 May 7, 1943 80 40 May 7, 1943 80 40 May 7, 1943 80 40 May 7, 1943 80 40 May 7, 1943 80 40 May 7, 1944 | 4 | 66 | | 3909 22-72 do Aug. 2, 1943 3910 22-72 do May 24, 1944 3911 22-79 do Sept. 1, 1943 18. ! 3912 22-79 do Sept. 1, 1943 18. ! 3913 22-79 do May 23, 1943 18. ! 3914 22-80 do Aug. 2, 1943 3915 3915 22-86 do July 31, 1943 3916 3917 3916 22-86 do July 31, 1943 3918 3918 7921 3918 7921 3918 3918 7921 3918
3918 39 | 3 | 66 | | 3910 22-72 do May 24, 1944 3911 22-79 do Apr. 2, 1943 18. 9 3912 22-79 do Sept. 1, 1943 18. 9 3913 22-79 do May 23, 1944 3914 22-80 do Aug. 2, 1943 3915 22-80 do May 23, 1944 3916 22-86 do July 31, 1943 3917 3918 Paul Higgins irrigation well SW4NE14 sec. 24 July 18, 1940 3919 do May 3, 1944 3919 do May 3, 1943 80 400 May 3, 1943 80 400 May 3, 1943 80 500 May 3, 1944 1943 80 500 May 4, 1944 500 May 3, 1944 500 May 3, 1944 500 May 3, 1944 500 May 3, 1944 500 May 3, 1944 500 May 3, 1943 80 500 May 6, 1944 7, 1944 500 May 8, | 4 | 66 | | 3911 22-79 | 8 5 | 64 | | 3912 22-79 do Sept. 1, 1943 18.6 | - | 00 | | 3913 22-79 do May 23, 1943 18. 5 | | | | 3914 22-80 do Aug. 2, 1943 3915 22-80 do May 23, 1944 3916 22-86 do July 31, 1943 3917 3918 Paul Higgins irrigation well SW4NE14 sec. 24 July 18, 1940 80 3020 do May 3, 1943 80 80 80 80 80 80 80 8 | | 63
63 | | 3916 22-86 do July 31, 1943 3917 22-86 do May 23, 1944 3918 Paul Higgins irrigation well SW¼NE¼ sec. 24 July 18, 1940 80 May 3, 1943 80 do May 3, 1943 80 | . 8 | 65 | | 3917 22-86 do May 23,1944 3918 Paul Higgins irrigation well SW¼NE¼ sec. 24 July 18,1940 80 3919 do May 3,1943 80 3020 do May 16,1944 80 | _ Š | 61 | | 3917 22-86 do May 23,1944 | 8 | 65 | | 3020 do Mar 16 1044 80 | 3 | 61 | | 3020 do Mar 16 1044 80 | 1,500 | 70 | | | 1,500 | | | 2001 T. J. Willis unused well SELICULIA and OA More to 1049 Dec. | | | | 3921 T. L. Willis unused well SE1/4SW1/4 sec. 24 Mar. 17, 1943 77. 8 | , | .] | | 3922 U. S. Grazing Service well SW1/8W1/4 sec. 31 Jan. 30, 1944 | | | | 3923 Pat Hinton domestic well NE½ NE½ sec. 35 Mar. 29, 1940 75 | | 71 | | 3924 YL Ranch stock well SW1/4 SE1/4 sec. 18 Mar. 6, 1940 | | | | 3925 Stock well in Telegraph Wash T. 6 S., R. 22 E.: SW1/4NW1/4 sec. 29 Jan. 16, 1941 10 | | | | 3926 Spring from gneiss SW14 sec. 31do | 3 | | | 3927 Tripp Canyon Spring T. 7 S., R. 22 E.: Sec. 30 May 3, 1944 | 1 | | | T. 4 S., R. 21 E.: | - | | | 3928 Spring in Goodwin Wash NE1/4NW1/4 sec. 33 Mar. 6, 1940 | - | | | 3929 Roy Layton stock well | - | | | 3930 YL Ranch stock well NW\\48W\\4 sec. 24. Mar. 6, 1940 | | | | 3931do | | 61 | | 3932 Hinton Rauch well SE1/4SW1/4 sec. 35 Jan. 17, 1941 4 18 | | | | 3933 do | | | | 3934 Halliday Ranch east well SE14SW14 sec. 3 do 14 | | | | 3935 Halliday Ranch stock well NE 4NE 4 sec. 10 | | | | T. 6 S., R. 21 E.; SE1/4SW1/4 sec. 3 | - | | | ervation; | | | | 3937 Goodwin Spring Near Geronimo, Ariz June 4, 1942 | 1 | 74 | | 3938 do Aug. 24, 1943 | 400 | | | 3939do Jan. 5, 1944
3940do June 14, 1944 | 400 | | | 3940dodoJune 14,1944 | 400 | 71
70 | ⁴ Samples taken during drilling. between the mouth of Bonita Creek near Solomonsville and the Southern Pacific Railat Calva—Continued [Analyses in parts per million] | Analysis No. | Source | Location | Date sampled | Depth of well (feet) | Yield (gallons
per minute) | Temperature (°F.) | |--------------|--|-------------------------------------|----------------|----------------------|-------------------------------|-------------------| | 3942 | Seepage in Gila River channel | | Mar. 31, 1944 | | 1 | | | 3943 | do | do | do | | | 72 | | 3944 | Driven observation well, USGS 16_
USGS 17 | Near Bylas, Ariz | June 13, 1940 | 16 | | | | 3945 | USGS 17 | do | June 12, 1940 | 14 | | <u>-</u> | | 3946 | USGS 18 | do | June 11, 1940 | 14 | | 64 | | 3947 | USGS 18 | a. | Nov. 9, 1943 | 14 | l | 67 | | 3948 | USGS 20 | d0 | June 13, 1940 | 19 | | 04 | | 3949 | USGS 21 | d0 | June 19, 1940 | 20 | | 69 | | 3950 | U. S. Indian Service domestic well. | At Bylas, Ariz | Mon 0 1040 | 500 | 40 | 69 | | | | | | | 40 | | | 3951 | U. S. Indian Service irrigation well. | Near Bylas, Ariz | Aug. 6, 1941 | 105 | | 66 | | 3952 | Public supply well, Bylas, Ariz | At Bylas, Ariz | Dec. 22, 1941 | 537 | ł | 78 | | 3953 | U. S. Indian Service irrigation well | do | July 16, 1941 | 100 | | 66 | | 3954 | Spring in limestone, USGS 29 | 11/2 miles northeast | Dec. 22, 1941 | 100 | 250 | 67 | | 0004 | spring in ninestone, OBGB 28 | of Bylas, Ariz. | 1000. 22, 1841 | | 200 | " | | 3955 | USGS 30 | 1 mile northeast of
Bylas, Ariz. | July 12, 1940 | | 600 | | | 3956 | USGS 30 | do do | Dec. 22, 1941 | | 1 | 1 1 | | 3957 | USGS 30 | do | | | | 79 | | 3958 | USGS 30 (flow at river) | do | do | | | 1 " 1 | | 3959 | USGS 30 (at spring) | đo | June 30, 1944 | | | [| | 3960 | Spring in bed of wash | do | Mar. 31, 1944 | | 5 | 78 | | 3961 | do do | do | do | | 2 | 77 | | 3962 | Spring in limestone, USGS 33 | 2 miles north of | Mar. 2, 1942 | | 40 | 69 | | | | | | | | " | | 3963 | Spring | 1½ miles west of | July 12, 1940 | | 20 | | | | | Bylas, Ariz. | | 1 | | l i | | 3964 | Driven obervation well, USGS 8 | At Calva, Ariz | June 17, 1940 | 14 | | 69 (| | 3965 | do | do | Nov. 11, 1943 | . 14 | | | | 3966 | USGS 9 | do | June 17, 1940 | 15 | | 66 | | 3967 | USGS 9 | do | Nov. 11, 1943 | 15 | | 66 | | 3 968 | USGS 11 | do | June 17, 1940 | 15 | | 66 | | | ******* | _ | | | l | ا ہے ا | | 3969 | USGS 11 | do | Nov. 11, 1943 | 15 | | 70 | | 3970 | USGS 12 | | June 14, 1940 | 15 | | 67 | | 3971 | USGS 13 | do | do | 20 | | 66 | | 3972 | USGS 13 | do | Nov. 11, 1943 | 20 | | 66 | | 3973 | USGS 14 | do | June 17, 1940 | 16 | | | | 3974 | U.S. Indian Service irrigation well. | 1 mile east of Calva | July 14, 1941 | 100 | | | | | I | l | l | l | l | 1 1 | between the mouth of Bonita Creek near Solomonsville and the Southern Pacific Railat Calva—Continued [Analyses in parts per million] | T | | | | | | | | | 1 | | | | | | |--|--------------|-------------------|---------------------|---------------------------------|---------------|----------------------------|--------------|---------------|--------------|----------------------|-----------------------|----------------------------|----------------|--------------| | Specific conduct-
ance (KX10 ^s at
25° C.) | Calcium (Ca) | Ħ | and po-
(Na+K) | arbonate
(HCO ₃) | Sulfate (SO4) | Chloride (C1) | F) | Nitrate (NO3) | Borate (BO3) | Disso
soli | lved
ds | Total hardness as
CaCO3 | Percent sodium | Analysis No. | | 2Ã. |) u | Magnesium
(Mg) | 86 | a
Co
Go | œ, |) ej | Fluoride (F) | 6 | l è l | n er | 늉숙 | P S | 80 | ı sı | | l g go | ij | Mg | Sodium
tassium (| E.H | te l | rid | rid | ate | ta l | Parts per
million | Tons per
acre-foot | CCP | ent | ysj | | SE S | alc | 8 | SSi | ie | l ig | 월 | On | itra | ora | in the | re- | ota | 2 | Leg | | Si | ΰ | Σ | 25 g | В | Sc | 5 | 굨 | Z | Ř | P | Te | Ĭ | P | (A | | 317 | 159 | 39 | 485 | 333 | 311 | 720 | | .5 | .5 | 1 990 | 2. 56 | 558 | 65 | 3942 | | 254 | 134 | 36 | 375 | 318 | 247 | 720
550 | 1. 5 | .5 | .4 | 1, 880
1, 500 | 2.04 | 482 | . 63 | 3943 | | 610 | 165 | 55 1 | ,038 | 180 | 305 | 1,718 | 2.8 | | | 3, 370 | 4.58 | 638 | 78 | 3944 | | 610
520
350 | 153 | 51 | 510 | 129 | 210 | 1,406 | 1.5 | | | 1, 990 | 2.71 | 592 | 65 | 3945
3946 | | | | | | | 319 | 892 | | | | | | | | | | 346
350
300 | 181 | 50 | 514 | 277 | 349 | 835 | 1.8 | 1.0 | 14 | 2,070 | 2.82 | 657
730 | 63 | 3947 | | 300 | 210 | 50 | 454 | 287 | 316 | 814
748 | 1.5 | | | 1, 986 | 2.70 | 730 | 5 7 | 3948
3949 | | 77 | | | | 233 | 230 | 42 | 3. 5 | | | | | 48 | | 3950 | | 325 | 178 | 45 | 473 | 313 | 306 | 765 | .8 | 2.5 | | 1, 924 | 2.62 | 630 | 62 | 3951 | | 64.7 | 5.5 | 4.8 | 127 | 184 | 88 | 43 | 2.2 | .2 | | 361 | .49 | 33 | 89 | 3952 | | 282 | 184 | 45 | 361 | 324 | 261 | 630 | 1.1 | .5 | | 1, 642 | 2. 23 | 644 | 55 | 3953 | | 460 | 146 | 40 | 783 | 293 | 198 | 1, 260 | 3.5 | | | 2, 580 | 3. 51 | 529 | 76 | 3954 | | 450 | 132 | 27 | 796 | 198 | 318 | 1, 190 | | | | 2, 560 | 3.48 | 440 | 80 | 3955 | | 448 | 137 | 29 | 783 | 192 | 335 | 1, 175 | | | | 2, 550 | 3, 47 | 461 | 79 | 3956 | | 426 | 120 | 26 | 776 | 183 | 303 | 1, 150 | 1.9 | 1.5 | 1.0 | 2,470 | 3.36 | 406 | 81 | 3957 | | 445 | 126 | 26 | 812 | 200 | 312 | 1, 200
1, 180 | 1.9 | .5 | 1.5 | 2, 580 | 3. 51 | 422 | 81 | 3958 | | 441
413 | 114 | 25 | 741 | | 007 | 1,180 | | 1. 5 | 1.0 | 2, 360 | 3. 21 | 388 | 81 | 3959
3960 | | 414 | 117 | 25
25 | 752 | 174
178 | 291
288 | 1, 100
1, 120 | 1.5 | 1.0 | 1.0 | 2,390 | 3. 25 | 395 | 81 | 3961 | | 399 | 96 | 35 | 705 | 266 | 87 | 1, 140 | 1.0 | 1.0 | 1.0 | 2,194 | 2.98 | 384 | 80 | 3962 | | 330 | 41 | 25 | 603 | 159 | 77 | 925 | | | | 1,750 | 2.38 | 205 | 86 | 3963 | | | | | | | | | | l | | | l | | | 0004 | | 550
455 | | | | | | 1,568 | | | | | | | | 3964 | | 400
600 | 404 | 191 | 070 | 166 | 560 | 1, 180
2, 062 | | | | 4 910 | 5. 73 | 1,506 | 59 | 3965
3966 | | 690
476 | 236 | 121
64 | 978
731 | 166
288 | 434 | 1, 240 | 2. 2
1. 8 | .5 | 14 | 4, 210
2, 850 | 3.88 | 852 | 65 | 3967 | | 260 | 102 | 38 | 383 | 169 | 214 | 622 | 1.5 | | | 1, 444 | 1.96 | 411 | 67 | 3968 | | 368 | 206 | 57 | 518 | 242 | 352 | 925 | 1.8 | . 5 | 12 | 2, 180 | 2.96 | 748 | 60 | 3969 | | 368
330 | | | 010 | 272 | 002 | 834 | 1.0 | | 1 | 2, 100 | 2.00 | | | 3970 | | 550 | | | | | | 1, 522
1, 320
1, 218 | | | | | | | | 3971 | | 488 | | | | | | 1,320 | | | | | | | | 3972 | | , 450 | | | | | | 1, 218 | | | | | | | | 3973 | | 472 | 291 | 91 | 606 | 355 | 410 | 1, 200 | 1.1 | 5.0 | | 2, 780 | 3.78 | 1, 100 | 54 | 3974 | | <u> </u> | 1 | • | | | | | | • | · | •
 | | | <u> </u> | 1 | Chemical character of waters of San Carlos River near Peridot, Ariz. | million] | |----------| | per | | parts | | В. | | lyses | | [Ana | | | | | | WATER | OF GILA | |---|-----------------------|---
--| | | į | cent
sodium | 54484
488
488 | | | Hardness as
CaCO a | Non-
car-
bonate | 000000 | | | Hardı
Ca | Total | 208
207
226
243
224
224
231 | | | olids | Tons
per
day | 85
42
31
10
17
5.7 | | | Dissolved solids | Tons
per
acre-
foot | 2.0
5.7
5.0
6.0
6.0
6.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7 | | | Dis | Parts
per
mil-
lion | 400
387
416
488
462
469 | | | | G G G | 98
91
129
129
124
125 | | | 5 | fate
(SO ₄) | 4828228
482228 | | , | Ë | bonate
bonate
(HCO ₃) | 262
289
311
300 | | | Sodium | and po-
tassium
(Na+K) | 78
73
100
97
97 | | | | magne-
sium
(Mg) | 11.
11.
12.
22.
21. | | | - 3 | clum
(Ca) | 52
55
61
61
57 | | | Specific | at 25° C.) | 70.8
69.9
77.8
90.2
86.6
8.6
8.6 | | | Mean | charge
(second-
feet) | 79
40.2
27.3
7.8
13.3
4.5 | | | | Date | Aug. 1-10, 1037 Aug. 11-20 Sept. 11-20 Sept. 11-20 Sept. 21-30 | | | | ysis
No. | 3975
3976
3977
3978
3979
3980 | Chemical character of ground waters in the Gila River Basin between the Southern Pacific Railroad bridge at Calva, Ariz., and Coolidge Dam Per-cent so-dium යි Total hard-ness as Ca-CO₃ 515Tons per acre-foot 1.62Dissolved solids Parts per mil-lion |1,199|Fluo-ride (F) 8.0 Chlo Clige Clige 526 456 362 198 252 312 Sul-fate (SO₄) 273 Bicar-bonate (HCO₃) 136 Sodium and po-tassium (Na+K) 242 Mag-ne-sium (Mg) 2 Cal-cium (Ca) 88 [Analyses in parts per million] con-duct-ance (KX10⁵ at 25° Specific 179 111 136 170 230 230 Tem-pera-ture (° F.) 88 88 29 99 89 89 Depth of well (feet) ន 14 7 8 2 23 Date sampled Gila County, San Car-los Reservation at mouth of Kelly Can-yon. June 18, 1940 June 19, 1940 ę Graham County, San Carlos Indian Reservation at mouth of Kelly Canyon. --do---Location ----qo----USGS 6, 790 feet south of GHa River. USGS 7, 1,110 feet south of GHa River. USGS 1, 1,790 feet north of GHa River. USGS 2, 1,250 feet north of Gila River. USGS 3, 670 feet north of Gila River. well, south Driven observation USGS 4, 210 feet of Gila River. Source Anal-ysis No. 3981 3982 3983 3985 3986 3984 # Chemical character of public water supplies | | • | | | |--|--|---------------------------------------|---| | Anal-
ysis
No. | Description | Date s | ampled | | | Bylas, Ariz., U. S. Indian Service, Well 537 feet deep. See analysis 3952. | | | | 3987
3988
3989 | Duncan, Ariz., Duncan Utilities Co. Water from 2 wells in Duncan mixed; water softened to 100 parts per million total hardness before delivery to users. Well 28 feet deep, generally provides most of the water used in Duncan. Temperature 56°, yield 150 gallons per minute. Well more than 200 feet deep, top water cased off. Yield 17 gallons per minute. Tap sample, mixture of water from both wells after softening. | d | 20, 1942
11, 1941 | | | Morenci, Ariz., Morenci Water and Electric Co. (controlled by Phelps Dodge Corp.). Well in canyon of Eagle Creek at Phelps Dodge Corp. pumping station west of Morenci. See analyses 246-263. | | | | 3990 | Pima, Ariz., Duncan Utilities Co. Flowing wells along Cottonwood Wash south of Pima. A nonflowing well in Pima provides an additional supply for emergency use (see analysis 1306). Tap sample, water from flowing wells. | July | 30, 1 94 3 | | | Safford, Ariz., Safford Municipal Utilities. Infiltration gallery on Bonita Creek about 5 miles above mouth provides most of supply. Storage reservoirs on Frye Creek in Pinaleno Mountains formerly were main source; now provide an emergency supply. An additional emergency supply is obtained from a well 74 feet deep in Roosevelt Park in Safford. | | | | 3991
3992 | Tap sample, water from Bonita Creek infiltration gallery Tap sample, water from Bonita Creek infiltration gallery and Roosevelt Park well. | July
July | 8, 1940
13, 1940 | | 3993
3994
3995
3996
3997
3998
3999 | Tap sample, water from Bonita Creek infiltration gallery | Mar.
Aug.
Jan.
Mar.
Sept. | 28, 1941
18, 1942
26, 1943
11, 1944
23, 1944
27, 1944
2, 1944 | Includes 2.3 parts per million potassium (K). Includes 52 parts per million silica (SiO₂) and 0.09 part per million iron (Fe). Includes 2.4 parts per million potassium (K). Includes 41 parts per million silica (SiO₂) and 0.04 part per million iron (Fe). ## in the Gila River Basin above Coolidge Dam ### [Analyses in parts per million] | Specific
con-
duct- | Cal- | | Sodium
and po- | | Sul- | Chio | Fino | ide trate a | | Dissolved
solids | | Total | Per- | A: | |--|---|---|--|--|---|--------------------------------------|------------------------------------|--|----------------------|--|---|--|--|--| | ance
(K×10s
at
25° C.) | cium
(Ca) | ne-
sium
(Mg) | tassium
(Na+
K) | | fate
(SO ₄) | ride
(Cl) | ride
(F) | | | per per
mil- acre | Tons
per
acre-
foot | ness
as | sodi- | nal-
ysis
No. | | 141 | | | | 2 65 | 265 | 139 | 2.7 | | | | | 322 | | 3987 | | 89. 5
116 | 24 | 9.6 | 231 | 209
284 | 133
1 95 | 85
104 | 9. 6
6. 9 | 1.0 | | 711 | 0. 97 | 52
99 | 83 | 3988
3989 | | 34. 6 | 1.2 | .8 | 83 | 164 | 12 | 23 | 2.0 | .6 | 1.6 | 204 | . 28 | 6 | 97 | 2990 | | 104 | | | | 253
354 | 4
30 | 5
132 | .1
1.4 | . 4
8. 7 | | | | 159
285 | | 3991
3992 | | 38. 2
40. 2
40. 4
39. 1
38. 6
231
9. 9 | 40
42
38
38
38
182
10 | 24
22
19
19
19
34
2.4 | 10
15
24
1 22
3 26
4 280
7 7.8 | 239
256
253
255
257
476
34 | 11
7. 2
6. 8
6. 1
5. 7
153
16 | 7
6.0
6.0
6.2
6.0
435 | 1. 2
.3
.3
.2
.4
.9 | 1. 2
. 8
1. 0
. 9
. 4
47
. 2 | .1
.1
.0
.5 | 212
219
220
270
4 264
6 1,410
3 72 | . 29
. 30
. 30
. 37
. 36
1. 92
. 10 | 199
195
173
173
173
594
35 | 10
14
23
20
23
50
26 | 3993
3994
3995
3996
3997
3998
3999 | ^{Includes 4.8 parts per million potassinm (K). Includes 46 parts per million silica (SiO₂) and 0.06 part per million iron (Fe). Includes 1.9 parts per million potassium (K). Includes 16 parts per million silica (SiO₂) and 0.73 part per million iron (Fe).} | Page | Page | |---|--| | Greenlee County, Ariz., ground water in 76-77, | San Carlos Reservoir, location | | 82-83 | water in, character 56-57 | | Ground waters, fluoride in | San Carlos River 57, 224 | | See also particular basins and areas. | San Francisco River 30-31, 79 | | • | relation of Clifton Hot Springs to quality | | Hidalgo County, N. Mex., ground water in 75 | of water in 34-35 | | History of the area6-7 | San Francisco River Basin, ground water in 33-36, | | History of the investigation 3 | 82–83 | | Holyoak Wash near Geronimo 115 | San Simon, artesian water near | | | San Simon Creek | | Indian Hot Springs, temperature 55 | San Simon Creek Basin, ground water in 38-41, | | Industrial development in the area 58-59 | 86-88 | | Irrigation, history and extent of 7 | San Simon Valley, geology of 9-10 | | water for63-67 | location5 | | classification of 62-63 | Scope of the investigation 3 | | harmful effects of dissolved matter in: 61-62 | Settlements in the area5-6 | | | 76 Wash near Artesia 108 | | Left-Hand Canyon, near Pima 112 | Smithville Canal near Thatcher 109–110 | | near Safford 109 | Solomonsville, water supply for | | Livestock, water for 61' | | | Location of the area 4 | Springs, occurrence and chemical character of | | | water of 22, 29–30, 32, 34–36, 53, 55, 56 | | Mack well, water in, character54,65 | Stockton Wash near Artesia 107-108 | | Marijilda Wash near Safford 109 | Streams of the area | | Markham Wash near Eden 113 | Surface water. See particular streams and areas. | | Matthews Wash near Glenbar 113 | Taylor Canyon near Pima 112 | | Morenci, ore treatment at, water for 58-59 | Temperature of the area | | population5 | Thatcher, climate at7 | | water supply for 36-37, 226-227 | | | | | | Noon Creek, near Artesia | Topography of the area | | North Fork of near Artesia 108 | Transportation in the area | | South Fork of near Artesia 109 | Tripp Canyon near Pima 114 | | Office of Indian Affairs, cooperation by | Underwood Wash near Pima 113 | | Office of Indian Affairs, cooperation by 3 | Union Canal near Thatcher 107 | | Phelps Dodge Corporation well, water in, | Othon Canaridar Inaconcillination | | chemical character of 33 | Valley fill, origin39 | |
Physiography of the area 4-5 | Valley fill, soluble matter in 19-20, 22 | | Pima, water supply for 226-227 | Valley fill, water in 53-56 | | Population of the area | Vegetation7-8 | | Precipitation in the area | Volcanic rocks, soluble matter in 19, 21 | | Previous investigations 10-11 | v ordanio rodas, somesio masser militariani il il il | | Public Health Service standards for water 60 | Water, analyses of, expression of results of 16-18 | | | analyses of, methods of14-16 | | Public water supplies, source and character 57-58 | dissolved matter in, sources of 18-22 | | Purpose of the investigation 3 | for domestic use 59-61 | | Rainfall in the area | for industrial use 58-59 | | Recent alluvium, occurrence 9 | for livestock 61 | | water in49-53 | public supplies of, source and character of 57-58, | | Rodeo area, N. Mex., ground water in 38 | 226–227 | | Trongo orca, Iv. Intex., Stonna Asset m | quality of, methods of investigation of 11-16 | | Safford, population | See also particular areas, basins, and | | water supply for 37, 57-58, 226-227 | streams. | | Safford Valley, geology of 9-10 | Water-bearing formations 10, 49-56 | | irrigation in, extent of | Wells, artesian 38-39, 53-55, 65 | | location 5, pl. 2 | See also particular basins and areas (Ground | | Ban Carlos Indian Reservation, water on 53 | • | | wan outed finding Descrivation, March on 03 | water). | # INDEX | Page | Page | |---|---| | Acknowledgments for aid 4 | Fort Thomas Consolidated Canal, at Fort | | Agriculture in the area | Thomas 114 | | Alluvium, occurrence | near Glenbar114 | | water in 49-53 | Frye Creek near Thatcher 110 | | Analyses, expression of results of 16-18 | • | | methods of | Geology of the area 8-10 | | Arizona State Land Commission, cooperation | Gila Hot Springs, discharge 22 | | by 3 | Gila River, at Black Point 93 | | Artesian water, occurrence and chemical char- | at Bylas93 | | acter38-39, 53-56, 65 | at Calva | | Ash Creek near Pima | at Fort Thomas 92 | | Beauty Spring 55 | at Pima | | Black Rock Wash at and near Fort Thomas. 115 | at Safford 12, 13, 90 | | Blue River near Clifton 31, 80 | Blue Creek to bridge on U. S. Highway | | Bonita Creek 37, 81 | 66623-29, 69-73 | | Bonita Creek Basin, ground water in | Bonita Creek to Calva 41-48, 89-106 | | Borate, occurrence21-22 | bridge on U. S. Highway 666 to Bonita | | Boron, harmful effects of, in irrigation water 62 | Creek 29, 78 | | Bylas, water supply for | course of 4-5 | | Carter Canyon near Pima | discharge of | | Central Wash near Pima 111 | fluoride in 20-21 | | Chase Creek | history of | | Chiton, population 5 | near Ashurst 92 | | water supply for | | | Clifton Hot Springs, relation of, to quality of | near Geronimo 92 near Glenbar 91 | | water in San Francisco River 34-35 | near Solomousville 89-90 | | water of 34, 35 | near Thatcher 91 | | Clifton Mineral Hot Springs Co., well of, water | removal of salts by 67-68 | | in, character | tributaries of and diversions from 48, 107-115 | | Climate | Gila River Basin, ground water in, above | | Cochise County, Ariz., ground water in 86-87 | bridge on U. S. Highway 666 76-77 | | Colvin-Jones Canal near Fort Thomas 114 | ground water in, Blue Creek to bridge on | | Copper, discovery of | U. S. Highway 666 27-29 | | Corps of Engineers, cooperation by | Bonita Creek to Calva 49-56, 116-223 | | Cottonwood Wash at and near Pima 111-112 | bridge on U. S. Highway 666 to Bonita | | Cuff Wash near Artesia | Creek 29–30, 81 | | Curtis Canal near Glenbar 113 | Calva to Coolidge Dam 57, 225 | | Defense Plant Corporation, cooperation by 3 | Grant County, N. Mex. 74 | | Development of the area | Hidalgo County, N. Mex | | Dissolved matter, sources of 18-22 | map ofpl. 1 | | Dodge-Nevada Canal near Glenbar | See also names of particular streams and | | Duncan, population | areas. | | water supply for 226-227 | Gillard hot springs, location and character 29-30 | | Duncan-Virden Valley, geology of 9-10 | Gold, discovery of | | irrigation in, extent of7 | Goodwin Spring, water of | | location 4-5 | Goodwin Wash at and near Geronimo 115 | | Eagle Creek 36, 80, 81 | Graham Canal near Thatcher 107 | | Eagle Creek Basin, ground water in 36-37, 82-83 | Graham County, ground water in 49-56, 88, 116-223 | | Eagle Creek Dasin, ground water in 30-37, 32-83 | Granitic rocks, soluble matter in 19, 21 | | Fluoride, occurrence20-21 | Grant County, N. Mex., ground water in. 22-23,74 | | significance of, in drinking water 60 | surface water in 22 | | Fluorite, occurrence 21 | Graveyard Wash near Safford 109 |